Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* (c) Copyright, Bill Richter 2013 *) | |
(* Distributed under the same license as HOL Light *) | |
(* *) | |
(* Proof of the Bug Puzzle conjecture of the HOL Light tutorial: *) | |
(* Any two triples with the same oriented area can be connected in *) | |
(* 5 moves or less (FiveMovesOrLess). Also a proof that 4 moves is not *) | |
(* enough, with an explicit counterexample. This result (NOTENOUGH_4) *) | |
(* is due to John Harrison, as is much of the basic vector code, and *) | |
(* the definition of move, which defines a closed subset *) | |
(* {(A,B,C,A',B',C') | move (A,B,C) (A',B',C')} subset R^6 x R^6 *) | |
(* and also a result FiveMovesOrLess_STRONG that handles the degenerate *) | |
(* case (the two triples not required to be non-collinear), which has a *) | |
(* very satisfying answer using this "closed" definition of move. *) | |
(* *) | |
(* The mathematical proofs are essentially due to Tom Hales. The *) | |
(* code is all in miz3, and was an attempt to explore Freek Wiedijk's *) | |
(* vision of mixing the procedural and declarative proof styles. *) | |
(* ========================================================================= *) | |
needs "Multivariate/determinants.ml";; | |
#load "unix.cma";; | |
loadt "miz3/miz3.ml";; | |
new_type_abbrev("triple",`:real^2#real^2#real^2`);; | |
default_prover := ("ya prover", | |
fun thl -> REWRITE_TAC thl THEN CONV_TAC (HOL_BY thl));; | |
horizon := 0;; | |
timeout := 500;; | |
let VEC2_TAC = | |
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_2; SUM_2; DIMINDEX_2; VECTOR_2; | |
vector_add; vec; dot; orthogonal; basis; | |
vector_neg; vector_sub; vector_mul; ARITH] THEN | |
CONV_TAC REAL_RING;; | |
let COLLINEAR_3_2Dzero = thm `; | |
!y z:real^2. collinear{vec 0,y,z} <=> | |
z$1 * y$2 = y$1 * z$2 | |
by REWRITE_TAC[COLLINEAR_3_2D] THEN VEC2_TAC; | |
`;; | |
let Noncollinear_3ImpliesDistinct = thm `; | |
!a b c:real^N. ~collinear {a,b,c} ==> ~(a = b) /\ ~(a = c) /\ ~(b = c) | |
by COLLINEAR_BETWEEN_CASES, BETWEEN_REFL; | |
`;; | |
let collinearSymmetry = thm `; | |
let A B C be real^N; | |
thus collinear {A,B,C} ==> collinear {A,C,B} /\ collinear {B,A,C} /\ | |
collinear {B,C,A} /\ collinear {C,A,B} /\ collinear {C,B,A} | |
proof | |
{A,C,B} SUBSET {A,B,C} /\ {B,A,C} SUBSET {A,B,C} /\ {B,C,A} SUBSET {A,B,C} /\ | |
{C,A,B} SUBSET {A,B,C} /\ {C,B,A} SUBSET {A,B,C} by SET_RULE; | |
qed by -, COLLINEAR_SUBSET; | |
`;; | |
let Noncollinear_2Span = thm `; | |
let u v w be real^2; | |
assume ~collinear {vec 0,v,w} [H1]; | |
thus ? s t. s % v + t % w = u | |
proof | |
!n r. ~(r < n) /\ r <= MIN n n ==> r = n [easy_arith] by ARITH_RULE; | |
~(w$1 * v$2 = v$1 * w$2) [H1'] by H1, COLLINEAR_3_2Dzero; | |
consider M such that | |
M = transp(vector[v;w]):real^2^2 [Mexists]; | |
det M = v$1 * w$2 - w$1 * v$2 by -, DIMINDEX_2, SUM_2, TRANSP_COMPONENT, VECTOR_2, LAMBDA_BETA, ARITH, CART_EQ, FORALL_2, DET_2; | |
~(det M = &0) by -, H1', REAL_ARITH; | |
consider x s t such that | |
M ** x = u /\ s = x$1 /\ t = x$2 by -, easy_arith, DET_EQ_0_RANK, RANK_BOUND, MATRIX_FULL_LINEAR_EQUATIONS; | |
v$1 * s + w$1 * t = u$1 /\ v$2 * s + w$2 * t = u$2 by Mexists, -, SIMP_TAC[matrix_vector_mul; DIMINDEX_2; SUM_2; TRANSP_COMPONENT; VECTOR_2; LAMBDA_BETA; ARITH; CART_EQ; FORALL_2] THEN MESON_TAC[]; | |
s % v + t % w = u by -, REAL_MUL_SYM, VECTOR_MUL_COMPONENT, VECTOR_ADD_COMPONENT, VEC2_TAC; | |
qed by -; | |
`;; | |
let oriented_area = new_definition | |
`oriented_area (a:real^2,b:real^2,c:real^2) = | |
((b$1 - a$1) * (c$2 - a$2) - (c$1 - a$1) * (b$2 - a$2)) / &2`;; | |
let oriented_areaSymmetry = thm `; | |
!A B C A' B' C':real^2. | |
oriented_area (A,B,C) = oriented_area(A',B',C') ==> | |
oriented_area (B,C,A) = oriented_area (B',C',A') /\ | |
oriented_area (C,A,B) = oriented_area (C',A',B') /\ | |
oriented_area (A,C,B) = oriented_area (A',C',B') /\ | |
oriented_area (B,A,C) = oriented_area (B',A',C') /\ | |
oriented_area (C,B,A) = oriented_area (C',B',A') | |
by REWRITE_TAC[oriented_area] THEN VEC2_TAC; | |
`;; | |
let move = new_definition | |
`!A B C A' B' C':real^2. move (A,B,C) (A',B',C') <=> | |
(B = B' /\ C = C' /\ collinear {vec 0,C - B,A' - A} \/ | |
A = A' /\ C = C' /\ collinear {vec 0,C - A,B' - B} \/ | |
A = A' /\ B = B' /\ collinear {vec 0,B - A,C' - C})`;; | |
let moveInvariant = thm `; | |
let p p' be triple; | |
assume move p p' [H1]; | |
thus oriented_area p = oriented_area p' | |
proof | |
consider X Y Z X' Y' Z' such that | |
p = X,Y,Z /\ p' = X',Y',Z' [pDef] by PAIR_SURJECTIVE; | |
move (X,Y,Z) (X',Y',Z') by -, H1; | |
oriented_area (X,Y,Z) = oriented_area (X',Y',Z') by -, SIMP_TAC[move; oriented_area; COLLINEAR_3; COLLINEAR_3_2Dzero] THEN VEC2_TAC; | |
qed by -, pDef; | |
`;; | |
let reachable = new_definition | |
`!p p'. | |
reachable p p' <=> ?n. ?s. | |
s 0 = p /\ s n = p' /\ | |
(!m. 0 <= m /\ m < n ==> move (s m) (s (SUC m)))`;; | |
let reachableN = new_definition | |
`!p p'. !n. | |
reachableN p p' n <=> ?s. | |
s 0 = p /\ s n = p' /\ | |
(!m. 0 <= m /\ m < n ==> move (s m) (s (SUC m)))`;; | |
let ReachLemma = thm `; | |
!p p'. reachable p p' <=> ?n. reachableN p p' n | |
by reachable, reachableN; | |
`;; | |
let reachableN_CLAUSES = thm `; | |
! p p'. (reachableN p p' 0 <=> p = p') /\ | |
! n. reachableN p p' (SUC n) <=> ? q. reachableN p q n /\ move q p' | |
proof | |
let p p' be triple; | |
consider s0 such that | |
s0 = \m:num. p'; | |
reachableN p p' 0 <=> p = p' [0CLAUSE] by -, reachableN, LT, LE_0; | |
! n. reachableN p p' (SUC n) ==> ? q. reachableN p q n /\ move q p' [Imp1] | |
proof | |
let n be num; | |
assume reachableN p p' (SUC n) [H1]; | |
consider s such that | |
s 0 = p /\ s (SUC n) = p' /\ !m. m < SUC n ==> move (s m) (s (SUC m)) [sDef] by H1, LE_0, reachableN; | |
consider q such that q = s n; | |
qed by sDef, -, LE_0, reachableN, LT; | |
! n. (? q. reachableN p q n /\ move q p') ==> reachableN p p' (SUC n) | |
proof | |
let n be num; | |
assume ? q. reachableN p q n /\ move q p'; | |
consider q such that | |
reachableN p q n /\ move q p' [qExists] by -; | |
consider s such that | |
s 0 = p /\ s n = q /\ !m. m < n ==> move (s m) (s (SUC m)) [sDef] by -, reachableN, LT, LE_0; | |
consider t such that | |
t = \m. if m < SUC n then s m else p'; | |
t 0 = p /\ t (SUC n) = p' /\ !m. m < SUC n ==> move (t m) (t (SUC m)) [tProp] by qExists, sDef, -, LT_0, LT_REFL, LT, LT_SUC; | |
qed by -, reachableN, LT, LE_0; | |
qed by 0CLAUSE, Imp1, -; | |
`;; | |
let reachableInvariant = thm `; | |
!p p':triple. reachable p p' ==> | |
oriented_area p = oriented_area p' | |
proof | |
!n. !p p'. reachableN p p' n ==> oriented_area p = oriented_area p' by INDUCT_TAC THEN ASM_MESON_TAC[reachableN_CLAUSES; moveInvariant]; | |
qed by -, ReachLemma; | |
`;; | |
let move2Cond = new_definition | |
`move2Cond (A,B,C) (A',B',C') <=> | |
~collinear {B,A,A'} /\ ~collinear {A',B,B'} \/ | |
~collinear {A,B,B'} /\ ~collinear {B',A,A'}`;; | |
let reachableN_Two = thm `; | |
!P0 P2:triple. reachableN P0 P2 2 <=> | |
?P1. move P0 P1 /\ move P1 P2 | |
by ONE, TWO, reachableN_CLAUSES; | |
`;; | |
let reachableN_Three = thm `; | |
!P0 P3:triple. reachableN P0 P3 3 <=> | |
?P1 P2. move P0 P1 /\ move P1 P2 /\ move P2 P3 | |
proof | |
3 = SUC 2 by ARITH_RULE; | |
qed by -, reachableN_Two, reachableN_CLAUSES; | |
`;; | |
let reachableN_Four = thm `; | |
!P0 P4:triple. reachableN P0 P4 4 <=> | |
?P1 P2 P3. move P0 P1 /\ move P1 P2 /\ move P2 P3 /\ move P3 P4 | |
proof | |
4 = SUC 3 by ARITH_RULE; | |
qed by -, reachableN_Three, reachableN_CLAUSES; | |
`;; | |
let moveSymmetry = thm `; | |
let A B C A' B' C' be real^2; | |
assume move (A,B,C) (A',B',C') [H1]; | |
thus move (B,C,A) (B',C',A') /\ move (C,A,B) (C',A',B') /\ | |
move (A,C,B) (A',C',B') /\ move (B,A,C) (B',A',C') /\ move (C,B,A) (C',B',A') | |
proof | |
!A B C A':real^2. collinear {vec 0, C - B, A' - A} ==> | |
collinear {vec 0, B - C, A' - A} by REWRITE_TAC[COLLINEAR_3_2Dzero] THEN VEC2_TAC; | |
qed by H1, -, move; | |
`;; | |
let reachableNSymmetry = thm `; | |
! A B C A' B' C' n. reachableN (A,B,C) (A',B',C') n ==> | |
reachableN (B,C,A) (B',C',A') n /\ reachableN (C,A,B) (C',A',B') n /\ | |
reachableN (A,C,B) (A',C',B') n /\ reachableN (B,A,C) (B',A',C') n /\ | |
reachableN (C,B,A) (C',B',A') n | |
proof | |
let A B C be real^2; | |
consider Q such that Q = \n A' B' C'. | |
reachableN (B,C,A) (B',C',A') n /\ reachableN (C,A,B) (C',A',B') n /\ | |
reachableN (A,C,B) (A',C',B') n /\ reachableN (B,A,C) (B',A',C') n /\ | |
reachableN (C,B,A) (C',B',A') n [Qdef]; | |
consider P such that | |
P = \n. ! A' B' C'. reachableN (A,B,C) (A',B',C') n ==> Q n A' B' C' [Pdef]; | |
P 0 [Base] by -, Qdef, reachableN_CLAUSES, PAIR_EQ; | |
!n. P n ==> P (SUC n) | |
proof | |
let n be num; | |
assume P n [Pn]; | |
! A' B' C'. reachableN (A,B,C) (A',B',C') (SUC n) ==> Q (SUC n) A' B' C' | |
proof | |
let A' B' C' be real^2; | |
assume reachableN (A,B,C) (A',B',C') (SUC n); | |
consider X Y Z such that | |
reachableN (A,B,C) (X,Y,Z) n /\ move (X,Y,Z) (A',B',C') [XYZdef] by -, reachableN_CLAUSES, PAIR_SURJECTIVE; | |
qed by -, Qdef, Pdef, Pn, XYZdef, moveSymmetry, reachableN_CLAUSES; | |
qed by -, Pdef; | |
!n. P n by Base, -, INDUCT_TAC; | |
qed by -, Pdef, Qdef; | |
`;; | |
let ORIENTED_AREA_COLLINEAR_CONG = thm `; | |
let A B C A' B' C' be real^2; | |
assume oriented_area (A,B,C) = oriented_area (A',B',C') [H1]; | |
thus collinear {A,B,C} <=> collinear {A',B',C'} | |
by H1, REWRITE_TAC[COLLINEAR_3_2D; oriented_area] THEN CONV_TAC REAL_RING; | |
`;; | |
let Basic2move_THM = thm `; | |
let A B C A' be real^2; | |
assume ~collinear {A,B,C} [H1]; | |
assume ~collinear {B,A,A'} [H2]; | |
thus ? X. move (A,B,C) (A,B,X) /\ move (A,B,X) (A',B,X) | |
proof | |
!r. r % (A - B) = (--r) % (B - A) /\ r % (A - B) = r % (A - B) + &0 % (C - B) [add0vector_mul] by VEC2_TAC; | |
~ ? r. A' - A = r % (A - B) [H2'] by H2, COLLINEAR_3, COLLINEAR_LEMMA, -; | |
consider r t such that | |
A' - A = r % (A - B) + t % (C - B) [rExists] by H1, COLLINEAR_3, Noncollinear_2Span; | |
~(t = &0) [tNonzero] by -, add0vector_mul, H2'; | |
consider s X such that | |
s = r / t /\ X = C + s % (A - B) [Xexists] by rExists; | |
A' - A = (t * s) % (A - B) + t % (C - B) by rExists, -, tNonzero, REAL_DIV_LMUL; | |
A' - A = t % (X - B) [tProp] by -, Xexists, VEC2_TAC; | |
X - C = (-- s) % (B - A) by -, Xexists, VEC2_TAC; | |
collinear {vec 0,B - A,X - C} /\ collinear {vec 0,X - B,A' - A} by -, tProp, COLLINEAR_LEMMA; | |
qed by -, move; | |
`;; | |
let FourStepMoveAB = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} [H1]; | |
assume ~collinear {B,A,A'} /\ ~collinear {A',B,B'} [H2]; | |
thus ? X Y. move (A,B,C) (A,B,X) /\ move (A,B,X) (A',B,X) /\ | |
move (A',B,X) (A',B,Y) /\ move (A',B,Y) (A',B',Y) | |
proof | |
consider X such that | |
move (A,B,C) (A,B,X) /\ move (A,B,X) (A',B,X) [ABX] by H1, H2, -, Basic2move_THM; | |
~collinear {A,B,X} /\ ~collinear {A',B,X} by H1, -, moveInvariant, ORIENTED_AREA_COLLINEAR_CONG; | |
~collinear {B,A',X} by -, collinearSymmetry; | |
consider Y such that | |
move (B,A',X) (B,A',Y) /\ move (B,A',Y) (B',A',Y) by -, H2, Basic2move_THM; | |
move (A',B,X) (A',B,Y) /\ move (A',B,Y) (A',B',Y) by -, moveSymmetry; | |
qed by -, ABX; | |
`;; | |
let FourStepMoveABBAreach = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} [H1]; | |
assume move2Cond (A,B,C) (A',B',C') [H2]; | |
thus ? Y. reachableN (A,B,C) (A',B',Y) 4 | |
proof | |
cases by H2, move2Cond; | |
suppose ~collinear {B,A,A'} /\ ~collinear {A',B,B'}; | |
qed by H1, -, FourStepMoveAB, reachableN_Four; | |
suppose ~collinear {A,B,B'} /\ ~collinear {B',A,A'} [Case2]; | |
~collinear {B,A,C} by H1, collinearSymmetry; | |
consider X Y such that | |
move (B,A,C) (B,A,X) /\ move (B,A,X) (B',A,X) /\ | |
move (B',A,X) (B',A,Y) /\ move (B',A,Y) (B',A',Y) by -, Case2, FourStepMoveAB; | |
qed by -, moveSymmetry, reachableN_Four; | |
end; | |
`;; | |
let NotMove2Impliescollinear = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} /\ ~collinear {A',B',C'} [H1]; | |
assume ~(A = A') /\ ~(B = B') [H2]; | |
assume ~move2Cond (A,B,C) (A',B',C') [H3]; | |
thus collinear {A,B,A',B'} | |
proof | |
~(A = B) /\ ~(A' = B') [Distinct] by H1, Noncollinear_3ImpliesDistinct; | |
{A,B,A',B'} SUBSET {A,A',B,B'} /\ {A,B,A',B'} SUBSET {B,B',A',A} /\ | |
{A,B,A',B'} SUBSET {A',B',B,A} [set4symmetry] by SET_RULE; | |
cases by H3, move2Cond; | |
suppose collinear {B,A,A'} /\ collinear {A,B,B'}; | |
collinear {A,B,A'} /\ collinear {A,B,B'} by -, collinearSymmetry; | |
qed by Distinct, -, COLLINEAR_4_3; | |
suppose collinear {B,A,A'} /\ collinear {B',A,A'}; | |
collinear {A,A',B} /\ collinear {A,A',B'} by -, collinearSymmetry; | |
collinear {A,A',B,B'} by H2, -, COLLINEAR_4_3; | |
qed by -, set4symmetry, COLLINEAR_SUBSET; | |
suppose collinear {A',B,B'} /\ collinear {A,B,B'}; | |
collinear {B,B',A'} /\ collinear {B,B',A} by -, collinearSymmetry; | |
collinear {B,B',A',A} by H2, -, COLLINEAR_4_3; | |
qed by -, set4symmetry, COLLINEAR_SUBSET; | |
suppose collinear {A',B,B'} /\ collinear {B',A,A'}; | |
collinear {A',B',B} /\ collinear {A',B',A} by -, collinearSymmetry; | |
collinear {A',B',B,A} by Distinct, -, COLLINEAR_4_3; | |
qed by -, set4symmetry, COLLINEAR_SUBSET; | |
end; | |
`;; | |
let DistinctImplies2moveable = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} /\ ~collinear {A',B',C'} [H1]; | |
assume ~(A = A') /\ ~(B = B') /\ ~(C = C') [H2]; | |
thus move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A') | |
proof | |
{A, B, B'} SUBSET {A, B, A', B'} /\ {B,B',C} SUBSET {B,C,B',C'} [3subset4] by SET_RULE; | |
~collinear {B,C,A} /\ ~collinear {B',C',A'} [H1'] by H1, collinearSymmetry; | |
assume ~(move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A')); | |
~move2Cond (A,B,C) (A',B',C') /\ ~move2Cond (B,C,A) (B',C',A') by -; | |
collinear {A, B, A', B'} /\ collinear {B,C,B',C'} by H1, H1', -, H2, NotMove2Impliescollinear; | |
collinear {A, B, B'} /\ collinear {B,B',C} by -, 3subset4, COLLINEAR_SUBSET; | |
collinear {A, B, C} by -, H2, COLLINEAR_3_TRANS; | |
qed by -, H1; | |
`;; | |
let SameCdiffAB = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} /\ ~collinear {A',B',C'} [H1]; | |
assume C = C' /\ ~(A = A') /\ ~(B = B') [H2]; | |
thus ? Y. reachableN (A,B,C) (Y,B',C') 2 \/ reachableN (A,B,C) (A',B',Y) 4 | |
proof | |
{B,B',A} SUBSET {A,B,A',B'} /\ {A,B,C} SUBSET {B,B',A,C} [easy_set] by SET_RULE; | |
cases; | |
suppose ~collinear {C,B,B'}; | |
consider X such that | |
move (B,C,A) (B,C,X) /\ move (B,C,X) (B',C',X) by H1, collinearSymmetry, -, H2, Basic2move_THM; | |
qed by -, reachableN_Two, reachableNSymmetry; | |
suppose move2Cond (A,B,C) (A',B',C'); | |
qed by H1, -, FourStepMoveABBAreach; | |
suppose collinear {C,B,B'} /\ ~move2Cond (A,B,C) (A',B',C'); | |
collinear {B,B',A} /\ collinear {B,B',C} by H1, H2, -, NotMove2Impliescollinear, easy_set, COLLINEAR_SUBSET, collinearSymmetry; | |
qed by -, H2, COLLINEAR_4_3, easy_set, COLLINEAR_SUBSET, H1; | |
end; | |
`;; | |
let FourMovesToCorrectTwo = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} /\ ~collinear {A',B',C'} [H1]; | |
thus ? n. n < 5 /\ ? Y. reachableN (A,B,C) (A',B',Y) n \/ | |
reachableN (A,B,C) (A',Y,C') n \/ reachableN (A,B,C) (Y,B',C') n | |
proof | |
~collinear {B,C,A} /\ ~collinear {B',C',A'} /\ ~collinear {C,A,B} /\ ~collinear {C',A',B'} [H1'] by H1, collinearSymmetry; | |
0 < 5 /\ 2 < 5 /\ 3 < 5 /\ 4 < 5 [easy_arith] by ARITH_RULE; | |
cases; | |
suppose A = A' /\ B = B' /\ C = C' \/ A = A' /\ B = B' /\ ~(C = C') \/ | |
A = A' /\ ~(B = B') /\ C = C' \/ ~(A = A') /\ B = B' /\ C = C'; | |
reachableN (A,B,C) (A',B',C') 0 \/ reachableN (A,B,C) (A',B',C) 0 \/ | |
reachableN (A,B,C) (A',B,C') 0 \/ reachableN (A,B,C) (A,B',C') 0 by -, reachableN_CLAUSES; | |
qed by -, easy_arith; | |
suppose A = A' /\ ~(B = B') /\ ~(C = C') \/ | |
~(A = A') /\ B = B' /\ ~(C = C') \/ ~(A = A') /\ ~(B = B') /\ C = C'; | |
qed by H1, H1', -, SameCdiffAB, reachableNSymmetry, easy_arith; | |
suppose ~(A = A') /\ ~(B = B') /\ ~(C = C'); | |
move2Cond (A,B,C) (A',B',C') \/ move2Cond (B,C,A) (B',C',A') by H1, -, DistinctImplies2moveable; | |
qed by H1, H1', -, FourStepMoveABBAreach, reachableNSymmetry, reachableN_Four, easy_arith; | |
end; | |
`;; | |
let CorrectFinalPoint = thm `; | |
let A B C A' C' be real^2; | |
assume oriented_area (A,B,C) = oriented_area (A,B,C') [H1]; | |
thus move (A,B,C) (A,B,C') | |
proof | |
((B$1 - A$1) * (C$2 - A$2) - (C$1 - A$1) * (B$2 - A$2)) / &2 = | |
((B$1 - A$1) * (C'$2 - A$2) - (C'$1 - A$1) * (B$2 - A$2)) / &2 by H1, oriented_area; | |
(C$1 - C'$1) * (B$2 - A$2) = (B$1 - A$1) * (C$2 - C'$2) by -, REAL_ARITH; | |
(C' - C)$1 * (B - A)$2 = (B - A)$1 * (C' - C)$2 by -, VEC2_TAC; | |
collinear {vec 0, B - A, C' - C} by -, COLLINEAR_3_2Dzero; | |
qed by -, move; | |
`;; | |
let FiveMovesOrLess = thm `; | |
let A B C A' B' C' be real^2; | |
assume ~collinear {A,B,C} [H1]; | |
assume oriented_area (A,B,C) = oriented_area (A',B',C') [H2]; | |
thus ? n. n <= 5 /\ reachableN (A,B,C) (A',B',C') n | |
proof | |
~collinear {A',B',C'} [H1'] by H1, H2, ORIENTED_AREA_COLLINEAR_CONG; | |
~(A = B) /\ ~(A = C) /\ ~(B = C) /\ ~(A' = B') /\ ~(A' = C') /\ ~(B' = C') [Distinct] by H1, -, Noncollinear_3ImpliesDistinct; | |
consider n Y such that | |
n < 5 /\ (reachableN (A,B,C) (A',B',Y) n \/ | |
reachableN (A,B,C) (A',Y,C') n \/ reachableN (A,B,C) (Y,B',C') n) [2Correct] by H1, H1', FourMovesToCorrectTwo; | |
cases by 2Correct; | |
suppose reachableN (A,B,C) (A',B',Y) n [Case]; | |
oriented_area (A',B',Y) = oriented_area (A',B',C') by H2, -, ReachLemma, reachableInvariant; | |
move (A',B',Y) (A',B',C') by -, Distinct, CorrectFinalPoint; | |
qed by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT; | |
suppose reachableN (A,B,C) (A',Y,C') n [Case]; | |
oriented_area (A',C',Y) = oriented_area (A',C',B') by H2, -, ReachLemma, reachableInvariant, oriented_areaSymmetry; | |
move (A',Y,C') (A',B',C') by -, Distinct, CorrectFinalPoint, moveSymmetry; | |
qed by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT; | |
suppose reachableN (A,B,C) (Y,B',C') n [Case]; | |
oriented_area (B',C',Y) = oriented_area (B',C',A') by H2, -, ReachLemma, reachableInvariant, oriented_areaSymmetry; | |
move (Y,B',C') (A',B',C') by -, Distinct, CorrectFinalPoint, moveSymmetry; | |
qed by Case, -, reachableN_CLAUSES, 2Correct, LE_SUC_LT; | |
end; | |
`;; | |
let NOTENOUGH_4 = thm `; | |
?p0 p4. oriented_area p0 = oriented_area p4 /\ ~reachableN p0 p4 4 | |
proof | |
consider p0 p4 such that | |
p0 = vector [&0;&0]:real^2,vector [&0;&1]:real^2,vector [&1;&0]:real^2 /\ | |
p4 = vector [&1;&1]:real^2,vector [&1;&2]:real^2,vector [&2;&1]:real^2 [p04Def]; | |
oriented_area p0 = oriented_area p4 [equal_areas] by -, ASM_REWRITE_TAC[oriented_area] THEN VEC2_TAC; | |
~reachableN p0 p4 4 by p04Def, ASM_REWRITE_TAC[reachableN_Four; NOT_EXISTS_THM; FORALL_PAIR_THM; move; COLLINEAR_3_2Dzero; FORALL_VECTOR_2] THEN VEC2_TAC; | |
qed by equal_areas, -; | |
`;; | |
let reachableN_Five = thm `; | |
!P0 P5:triple. reachableN P0 P5 5 <=> | |
?P1 P2 P3 P4. move P0 P1 /\ move P1 P2 /\ move P2 P3 /\ move P3 P4 /\ move P4 P5 | |
proof | |
5 = SUC 4 by ARITH_RULE; | |
qed by -, reachableN_CLAUSES, reachableN_Four; | |
`;; | |
let EasyCollinearMoves = thm `; | |
(!A A' B:real^2. move (A:real^2,B,B) (A',B,B)) /\ | |
!A B B' C:real^2. collinear {A:real^2,B,C} /\ collinear {A,B',C} | |
==> move (A,B,C) (A,B',C) | |
by REWRITE_TAC[move; COLLINEAR_3_2D] THEN VEC2_TAC; | |
`;; | |
let FiveMovesOrLess_STRONG = thm `; | |
let A B C A' B' C' be real^2; | |
assume oriented_area (A,B,C) = oriented_area (A',B',C') [H1]; | |
thus ?n. n <= 5 /\ reachableN (A,B,C) (A',B',C') n | |
proof | |
{A,C,C} = {A,C} /\ {B',C,C} = {B',C} /\ {B',B',C} = {B',C} /\ {B',B',C'} = {B',C'} [easy_sets] by SET_RULE; | |
cases; | |
suppose ~collinear {A,B,C}; | |
qed by -, H1, FiveMovesOrLess; | |
suppose collinear {A,B,C} [ABCcol]; | |
collinear {A',B',C'} [A'B'C'col] by -, H1, ORIENTED_AREA_COLLINEAR_CONG; | |
consider P1 P2 P3 P4 such that | |
P1 = A,C,C /\ P2 = B',C,C /\ P3 = B',B',C /\ P4 = B',B',C'; | |
move (A,B,C) P1 /\ move P1 P2 /\ move P2 P3 /\ move P3 P4 /\ move P4 (A',B',C') by -, ABCcol, A'B'C'col, easy_sets, COLLINEAR_2, collinearSymmetry, moveSymmetry, EasyCollinearMoves; | |
qed by -, reachableN_Five, LE_REFL; | |
end; | |
`;; | |