Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Implementation of Cooper's algorithm via proforma theorems. *) | |
(* ========================================================================= *) | |
prioritize_int();; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic syntax on integer terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let dest_mul = dest_binop `(*)`;; | |
let dest_add = dest_binop `(+)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Divisibility. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("divides",(12,"right"));; | |
let divides = new_definition | |
`a divides b <=> ?x. b = a * x`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Trivial lemmas about integers. *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_DOWN2 = prove | |
(`!a b. ?c. !x. x < c ==> x < a /\ x < b`, | |
MESON_TAC[INT_LE_TOTAL; INT_LET_TRANS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Trivial lemmas about divisibility. *) | |
(* ------------------------------------------------------------------------- *) | |
let DIVIDES_ADD = prove | |
(`!d a b. d divides a /\ d divides b ==> d divides (a + b)`, | |
MESON_TAC[divides; INT_ADD_LDISTRIB]);; | |
let DIVIDES_SUB = prove | |
(`!d a b. d divides a /\ d divides b ==> d divides (a - b)`, | |
MESON_TAC[divides; INT_SUB_LDISTRIB]);; | |
let DIVIDES_ADD_REVR = prove | |
(`!d a b. d divides a /\ d divides (a + b) ==> d divides b`, | |
MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - a = b`]);; | |
let DIVIDES_ADD_REVL = prove | |
(`!d a b. d divides b /\ d divides (a + b) ==> d divides a`, | |
MESON_TAC[DIVIDES_SUB; INT_ARITH `(a + b) - b = a`]);; | |
let DIVIDES_LMUL = prove | |
(`!d a x. d divides a ==> d divides (x * a)`, | |
ASM_MESON_TAC[divides; INT_ARITH `a * b * c = b * a * c`]);; | |
let DIVIDES_RNEG = prove | |
(`!d a. d divides (--a) <=> d divides a`, | |
REWRITE_TAC[divides] THEN MESON_TAC[INT_MUL_RNEG; INT_NEG_NEG]);; | |
let DIVIDES_LNEG = prove | |
(`!d a. (--d) divides a <=> d divides a`, | |
REWRITE_TAC[divides] THEN | |
MESON_TAC[INT_MUL_RNEG; INT_MUL_LNEG; INT_NEG_NEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* More specialized lemmas (see footnotes on p4 and p5). *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_DOWN_MUL_LT = prove | |
(`!x y d. &0 < d ==> ?c. x + c * d < y`, | |
MESON_TAC[INT_ARCH; INT_LT_REFL; | |
INT_ARITH `x - y < c * d <=> x + --c * d < y`]);; | |
let INT_MOD_LEMMA = prove | |
(`!d x. &0 < d ==> ?c. &1 <= x + c * d /\ x + c * d <= d`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPECL [`x:int`; `&0`] o MATCH_MP INT_DOWN_MUL_LT) THEN | |
DISCH_THEN(X_CHOOSE_TAC `c0:int`) THEN | |
SUBGOAL_THEN `?c1. &0 <= c1 /\ --(x + c0 * d) < c1 * d` MP_TAC THENL | |
[SUBGOAL_THEN `?c1. --(x + c0 * d) < c1 * d` MP_TAC THENL | |
[ASM_MESON_TAC[INT_ARCH; INT_ARITH `&0 < d ==> ~(d = &0)`]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN | |
MATCH_MP_TAC(INT_ARITH | |
`(&0 < --c1 ==> &0 < --cd) /\ xcod < &0 | |
==> --xcod < cd ==> &0 <= c1`) THEN | |
ASM_SIMP_TAC[GSYM INT_MUL_LNEG; INT_LT_MUL]; ALL_TAC] THEN | |
REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`; GSYM NOT_FORALL_THM] THEN | |
REWRITE_TAC[GSYM INT_FORALL_POS] THEN | |
REWRITE_TAC[NOT_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
REWRITE_TAC[INT_ARITH `--(x + a * d) < b * d <=> &1 <= x + (a + b) * d`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `c0 + &n` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
UNDISCH_TAC `&1 <= x + (c0 + &n) * d` THEN SPEC_TAC(`n:num`,`n:num`) THEN | |
INDUCT_TAC THEN REWRITE_TAC[ARITH_RULE `SUC n - 1 = n`] THENL | |
[REWRITE_TAC[SUB_0; LT_REFL; INT_ADD_RID] THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN INT_ARITH_TAC; | |
REWRITE_TAC[GSYM INT_OF_NUM_SUC; LT] THEN INT_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Shadow for restricted class of formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
let cform_INDUCT,cform_RECURSION = define_type | |
"cform = Lt int | |
| Gt int | |
| Eq int | |
| Ne int | |
| Divides int int | |
| Ndivides int int | |
| And cform cform | |
| Or cform cform | |
| Nox bool";; | |
(* ------------------------------------------------------------------------- *) | |
(* Interpretation of a cform. *) | |
(* ------------------------------------------------------------------------- *) | |
let interp = new_recursive_definition cform_RECURSION | |
`(interp x (Lt e) <=> x + e < &0) /\ | |
(interp x (Gt e) <=> x + e > &0) /\ | |
(interp x (Eq e) <=> (x + e = &0)) /\ | |
(interp x (Ne e) <=> ~(x + e = &0)) /\ | |
(interp x (Divides c e) <=> c divides (x + e)) /\ | |
(interp x (Ndivides c e) <=> ~(c divides (x + e))) /\ | |
(interp x (And p q) <=> interp x p /\ interp x q) /\ | |
(interp x (Or p q) <=> interp x p \/ interp x q) /\ | |
(interp x (Nox P) <=> P)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The "minus infinity" and "plus infinity" variants. *) | |
(* ------------------------------------------------------------------------- *) | |
let minusinf = new_recursive_definition cform_RECURSION | |
`(minusinf (Lt e) = Nox T) /\ | |
(minusinf (Gt e) = Nox F) /\ | |
(minusinf (Eq e) = Nox F) /\ | |
(minusinf (Ne e) = Nox T) /\ | |
(minusinf (Divides c e) = Divides c e) /\ | |
(minusinf (Ndivides c e) = Ndivides c e) /\ | |
(minusinf (And p q) = And (minusinf p) (minusinf q)) /\ | |
(minusinf (Or p q) = Or (minusinf p) (minusinf q)) /\ | |
(minusinf (Nox P) = Nox P)`;; | |
let plusinf = new_recursive_definition cform_RECURSION | |
`(plusinf (Lt e) = Nox F) /\ | |
(plusinf (Gt e) = Nox T) /\ | |
(plusinf (Eq e) = Nox F) /\ | |
(plusinf (Ne e) = Nox T) /\ | |
(plusinf (Divides c e) = Divides c e) /\ | |
(plusinf (Ndivides c e) = Ndivides c e) /\ | |
(plusinf (And p q) = And (plusinf p) (plusinf q)) /\ | |
(plusinf (Or p q) = Or (plusinf p) (plusinf q)) /\ | |
(plusinf (Nox P) = Nox P)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* All the "dividing" things divide the given constant (e.g. their LCM). *) | |
(* ------------------------------------------------------------------------- *) | |
let alldivide = new_recursive_definition cform_RECURSION | |
`(alldivide d (Lt e) <=> T) /\ | |
(alldivide d (Gt e) <=> T) /\ | |
(alldivide d (Eq e) <=> T) /\ | |
(alldivide d (Ne e) <=> T) /\ | |
(alldivide d (Divides c e) <=> c divides d) /\ | |
(alldivide d (Ndivides c e) <=> c divides d) /\ | |
(alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\ | |
(alldivide d (Or p q) <=> alldivide d p /\ alldivide d q) /\ | |
(alldivide d (Nox P) <=> T)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* A-sets and B-sets. *) | |
(* ------------------------------------------------------------------------- *) | |
let aset = new_recursive_definition cform_RECURSION | |
`(aset (Lt e) = {(--e)}) /\ | |
(aset (Gt e) = {}) /\ | |
(aset (Eq e) = {(--e + &1)}) /\ | |
(aset (Ne e) = {(--e)}) /\ | |
(aset (Divides c e) = {}) /\ | |
(aset (Ndivides c e) = {}) /\ | |
(aset (And p q) = (aset p) UNION (aset q)) /\ | |
(aset (Or p q) = (aset p) UNION (aset q)) /\ | |
(aset (Nox P) = {})`;; | |
let bset = new_recursive_definition cform_RECURSION | |
`(bset (Lt e) = {}) /\ | |
(bset (Gt e) = {(--e)}) /\ | |
(bset (Eq e) = {(--(e + &1))}) /\ | |
(bset (Ne e) = {(--e)}) /\ | |
(bset (Divides c e) = {}) /\ | |
(bset (Ndivides c e) = {}) /\ | |
(bset (And p q) = (bset p) UNION (bset q)) /\ | |
(bset (Or p q) = (bset p) UNION (bset q)) /\ | |
(bset (Nox P) = {})`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The key minimality case analysis for the integers. *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_EXISTS_CASES = prove | |
(`(?x. P x) <=> (!y. ?x. x < y /\ P x) \/ (?x. P x /\ !y. y < x ==> ~P y)`, | |
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN | |
MATCH_MP_TAC(TAUT `(~b ==> a) ==> a \/ b`) THEN | |
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`; NOT_FORALL_THM; | |
NOT_IMP] THEN | |
STRIP_TAC THEN X_GEN_TAC `y:int` THEN | |
DISJ_CASES_TAC(INT_ARITH `x < y \/ &0 <= x - y`) THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!n. ?y. y < x - &n /\ P y` MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[INT_FORALL_POS] THEN | |
DISCH_THEN(MP_TAC o SPEC `x - y`) THEN | |
ASM_REWRITE_TAC[INT_ARITH `x - (x - y) = y`]] THEN | |
INDUCT_TAC THEN | |
REWRITE_TAC[INT_SUB_RZERO; GSYM INT_OF_NUM_SUC] THEN | |
ASM_MESON_TAC[INT_ARITH `z < y /\ y < x - &n ==> z < x - (&n + &1)`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas towards the main theorems (following my book). *) | |
(* ------------------------------------------------------------------------- *) | |
let MINUSINF_LEMMA = prove | |
(`!p. ?y. !x. x < y ==> (interp x p <=> interp x (minusinf p))`, | |
MATCH_MP_TAC cform_INDUCT THEN | |
REWRITE_TAC[interp; minusinf] THEN | |
MATCH_MP_TAC(TAUT | |
`(a /\ b /\ c /\ d) /\ (e /\ f) ==> a /\ b /\ c /\ d /\ e /\ f`) THEN | |
CONJ_TAC THENL | |
[MESON_TAC[INT_ARITH `x < --a ==> x + a < &0`; INT_GT; | |
INT_LT_ANTISYM; INT_LT_REFL]; | |
ALL_TAC] THEN | |
CONJ_TAC THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN STRIP_TAC THEN | |
MP_TAC(SPECL [`a:int`; `b:int`] INT_DOWN2) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[]);; | |
let MINUSINF_REPEATS = prove | |
(`!p c d x. alldivide d p | |
==> (interp x (minusinf p) <=> interp (x + c * d) (minusinf p))`, | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC cform_INDUCT THEN | |
SIMP_TAC[interp; minusinf; alldivide] THEN | |
ONCE_REWRITE_TAC[INT_ARITH `(x + d) + y = (x + y) + d`] THEN | |
MESON_TAC[DIVIDES_LMUL; DIVIDES_ADD_REVL; DIVIDES_ADD]);; | |
let NOMINIMAL_EQUIV = prove | |
(`alldivide d p /\ &0 < d | |
==> ((!y. ?x. x < y /\ interp x p) <=> | |
?j. &1 <= j /\ j <= d /\ interp j (minusinf p))`, | |
ASM_MESON_TAC[MINUSINF_LEMMA; MINUSINF_REPEATS; INT_DOWN_MUL_LT; | |
INT_DOWN2; INT_MOD_LEMMA]);; | |
let BDISJ_REPEATS_LEMMA = prove | |
(`!d p. alldivide d p /\ &0 < d | |
==> !x. interp x p /\ ~(interp (x - d) p) | |
==> ?j b. &1 <= j /\ j <= d /\ b IN bset p /\ (x = b + j)`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a /\ b ==> c <=> b ==> a ==> c`] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN | |
MATCH_MP_TAC cform_INDUCT THEN | |
REWRITE_TAC[interp; alldivide; bset; NOT_IN_EMPTY] THEN | |
MATCH_MP_TAC(TAUT `(a /\ b /\ c /\ d /\ e /\ f) /\ g /\ h | |
==> a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
SIMP_TAC[TAUT `~a \/ a`; | |
TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; | |
TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; | |
TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`; | |
DE_MORGAN_THM; IN_UNION; EXISTS_OR_THM; FORALL_AND_THM]] THEN | |
REPEAT STRIP_TAC THENL | |
[ALL_TAC; | |
MAP_EVERY EXISTS_TAC [`x + a`; `--a`]; | |
MAP_EVERY EXISTS_TAC [`&1`; `--a - &1`]; | |
MAP_EVERY EXISTS_TAC [`d:int`; `--a`]; | |
ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`; DIVIDES_SUB]; | |
ASM_MESON_TAC[INT_ARITH `(x - y) + z = (x + z) - y`; | |
INT_ARITH `(x - y) + y = x`; DIVIDES_ADD]] THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
REWRITE_TAC[IN_SING] THEN INT_ARITH_TAC);; | |
let MAINTHM_B = prove | |
(`!p d. alldivide d p /\ &0 < d | |
==> ((?x. interp x p) <=> | |
?j. &1 <= j /\ j <= d /\ | |
(interp j (minusinf p) \/ | |
?b. b IN bset p /\ interp (b + j) p))`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; EXISTS_OR_THM] THEN | |
MATCH_MP_TAC(TAUT | |
`!a1 a2. (a <=> a1 \/ a2) /\ (a1 <=> b) /\ (a2 ==> c) /\ (c ==> a) | |
==> (a <=> b \/ c)`) THEN | |
EXISTS_TAC `!y. ?x. x < y /\ interp x p` THEN | |
EXISTS_TAC `?x. interp x p /\ !y. y < x ==> ~(interp y p)` THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[GSYM INT_EXISTS_CASES]; | |
ASM_MESON_TAC[NOMINIMAL_EQUIV]; | |
ALL_TAC; | |
MESON_TAC[]] THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:int` | |
(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x - d`))) THEN | |
ASM_SIMP_TAC[INT_ARITH `&0 < d ==> x - d < x`] THEN | |
DISCH_TAC THEN | |
MP_TAC(SPECL [`d:int`; `p:cform`] BDISJ_REPEATS_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:int`) THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Deduce the other one by a symmetry argument rather than a similar proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let mirror = new_recursive_definition cform_RECURSION | |
`(mirror (Lt e) = Gt(--e)) /\ | |
(mirror (Gt e) = Lt(--e)) /\ | |
(mirror (Eq e) = Eq(--e)) /\ | |
(mirror (Ne e) = Ne(--e)) /\ | |
(mirror (Divides c e) = Divides c (--e)) /\ | |
(mirror (Ndivides c e) = Ndivides c (--e)) /\ | |
(mirror (And p q) = And (mirror p) (mirror q)) /\ | |
(mirror (Or p q) = Or (mirror p) (mirror q)) /\ | |
(mirror (Nox P) = Nox P)`;; | |
let INTERP_MIRROR_LEMMA = prove | |
(`!p x. interp (--x) (mirror p) <=> interp x p`, | |
MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; interp] THEN | |
REWRITE_TAC[GSYM INT_NEG_ADD; DIVIDES_RNEG] THEN INT_ARITH_TAC);; | |
let INTERP_MIRROR = prove | |
(`!p x. interp x (mirror p) <=> interp (--x) p`, | |
MESON_TAC[INTERP_MIRROR_LEMMA; INT_NEG_NEG]);; | |
let BSET_MIRROR = prove | |
(`!p. bset(mirror p) = IMAGE (--) (aset p)`, | |
MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; aset; bset] THEN | |
REWRITE_TAC[IMAGE_CLAUSES; IMAGE_UNION] THEN | |
REWRITE_TAC[EXTENSION; IN_SING] THEN INT_ARITH_TAC);; | |
let MINUSINF_MIRROR = prove | |
(`!p. minusinf (mirror p) = mirror (plusinf p)`, | |
MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[plusinf; minusinf; mirror]);; | |
let PLUSINF_MIRROR = prove | |
(`!p. plusinf p = mirror(minusinf (mirror p))`, | |
MATCH_MP_TAC cform_INDUCT THEN | |
SIMP_TAC[plusinf; minusinf; mirror; INT_NEG_NEG]);; | |
let ALLDIVIDE_MIRROR = prove | |
(`!p d. alldivide d (mirror p) = alldivide d p`, | |
MATCH_MP_TAC cform_INDUCT THEN SIMP_TAC[mirror; alldivide]);; | |
let EXISTS_NEG = prove | |
(`(?x. P(--x)) <=> (?x. P(x))`, | |
MESON_TAC[INT_NEG_NEG]);; | |
let FORALL_NEG = prove | |
(`(!x. P(--x)) <=> (!x. P x)`, | |
MESON_TAC[INT_NEG_NEG]);; | |
let EXISTS_MOD_IMP = prove | |
(`!P d. (!c x. P(x + c * d) <=> P(x)) /\ (?j. &1 <= j /\ j <= d /\ P(--j)) | |
==> ?j. &1 <= j /\ j <= d /\ P(j)`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `d:int = j` THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL [`--(&2)`; `d:int`]) THEN | |
ASM_REWRITE_TAC[INT_ARITH `d + --(&2) * d = --d`] THEN | |
ASM_MESON_TAC[INT_LE_REFL]; | |
FIRST_X_ASSUM(MP_TAC o SPECL [`&1`; `--j`]) THEN | |
ASM_REWRITE_TAC[INT_ARITH `--j + &1 * d = d - j`] THEN | |
DISCH_TAC THEN EXISTS_TAC `d - j` THEN ASM_REWRITE_TAC[] THEN | |
MAP_EVERY UNDISCH_TAC [`&1 <= j`; `j <= d`; `~(d:int = j)`] THEN | |
INT_ARITH_TAC]);; | |
let EXISTS_MOD_EQ = prove | |
(`!P d. (!c x. P(x + c * d) <=> P(x)) | |
==> ((?j. &1 <= j /\ j <= d /\ P(--j)) <=> | |
(?j. &1 <= j /\ j <= d /\ P(j)))`, | |
REPEAT STRIP_TAC THEN EQ_TAC THENL | |
[MP_TAC(SPEC `P:int->bool` EXISTS_MOD_IMP); | |
MP_TAC(SPEC `\x. P(--x):bool` EXISTS_MOD_IMP)] THEN | |
DISCH_THEN(MP_TAC o SPEC `d:int`) THEN ASM_REWRITE_TAC[INT_NEG_NEG] THEN | |
ASM_REWRITE_TAC[INT_ARITH `--(x + c * d) = --x + --c * d`; FORALL_NEG] THEN | |
MESON_TAC[]);; | |
let MAINTHM_A = prove | |
(`!p d. alldivide d p /\ &0 < d | |
==> ((?x. interp x p) <=> | |
?j. &1 <= j /\ j <= d /\ | |
(interp j (plusinf p) \/ | |
?a. a IN aset p /\ interp (a - j) p))`, | |
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXISTS_NEG] THEN | |
REWRITE_TAC[GSYM INTERP_MIRROR] THEN | |
MP_TAC(SPECL [`mirror p`; `d:int`] MAINTHM_B) THEN | |
ASM_REWRITE_TAC[ALLDIVIDE_MIRROR] THEN DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`; | |
TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`; EXISTS_OR_THM] THEN | |
BINOP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[INTERP_MIRROR; MINUSINF_MIRROR; BSET_MIRROR] THEN | |
REWRITE_TAC[INT_ARITH `--(b + j) = --b - j`; IN_IMAGE] THEN | |
MESON_TAC[INT_NEG_NEG]] THEN | |
REWRITE_TAC[PLUSINF_MIRROR] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALLDIVIDE_MIRROR]) THEN | |
SPEC_TAC(`mirror p`,`q:cform`) THEN REWRITE_TAC[INTERP_MIRROR] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(GSYM EXISTS_MOD_EQ) THEN | |
ASM_SIMP_TAC[GSYM MINUSINF_REPEATS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proforma for elimination of coefficient of main variable. *) | |
(* ------------------------------------------------------------------------- *) | |
let EXISTS_MULTIPLE_THM_1 = prove | |
(`(?x. P(&1 * x)) <=> ?x. P(x)`, | |
REWRITE_TAC[INT_MUL_LID]);; | |
let EXISTS_MULTIPLE_THM = prove | |
(`(?x. P(c * x)) <=> ?x. c divides x /\ P(x)`, | |
MESON_TAC[divides]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Ordering of variables determined by a list, *with* trivial default. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec earlier vars x y = | |
match vars with | |
z::ovs -> if z = y then false | |
else if z = x then true | |
else earlier ovs x y | |
| [] -> x < y;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion of integer constant to ML rational number. *) | |
(* This is a tweaked copy of the real-type versions in "real.ml". *) | |
(* ------------------------------------------------------------------------- *) | |
let is_num_const = | |
let ptm = `&` in | |
fun tm -> try let l,r = dest_comb tm in | |
l = ptm && is_numeral r | |
with Failure _ -> false;; | |
let mk_num_const,dest_num_const = | |
let ptm = `&` in | |
(fun n -> mk_comb(ptm,mk_numeral n)), | |
(fun tm -> let l,r = dest_comb tm in | |
if l = ptm then dest_numeral r | |
else failwith "dest_num_const");; | |
let is_int_const = | |
let ptm = `(--)` in | |
fun tm -> | |
is_num_const tm || | |
try let l,r = dest_comb tm in | |
l = ptm && is_num_const r | |
with Failure _ -> false;; | |
let mk_int_const,dest_int_const = | |
let ptm = `(--)` in | |
(fun n -> if n </ Int 0 then mk_comb(ptm,mk_num_const(minus_num n)) | |
else mk_num_const n), | |
(fun tm -> if try rator tm = ptm with Failure _ -> false then | |
minus_num (dest_num_const(rand tm)) | |
else dest_num_const tm);; | |
(* ------------------------------------------------------------------------- *) | |
(* Similar tweaks of all the REAL_INT_..._CONV arith convs in real.ml *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_LE_CONV,INT_LT_CONV, | |
INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV = | |
let tth = | |
TAUT `(F /\ F <=> F) /\ (F /\ T <=> F) /\ | |
(T /\ F <=> F) /\ (T /\ T <=> T)` in | |
let nth = TAUT `(~T <=> F) /\ (~F <=> T)` in | |
let NUM2_EQ_CONV = | |
COMB2_CONV (RAND_CONV NUM_EQ_CONV) NUM_EQ_CONV THENC | |
GEN_REWRITE_CONV I [tth] in | |
let NUM2_NE_CONV = | |
RAND_CONV NUM2_EQ_CONV THENC | |
GEN_REWRITE_CONV I [nth] in | |
let [pth_le1; pth_le2a; pth_le2b; pth_le3] = (CONJUNCTS o prove) | |
(`(--(&m) <= &n <=> T) /\ | |
(&m <= &n <=> m <= n) /\ | |
(--(&m) <= --(&n) <=> n <= m) /\ | |
(&m <= --(&n) <=> (m = 0) /\ (n = 0))`, | |
REWRITE_TAC[INT_LE_NEG2] THEN | |
REWRITE_TAC[INT_LE_LNEG; INT_LE_RNEG] THEN | |
REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_LE; LE_0] THEN | |
REWRITE_TAC[LE; ADD_EQ_0]) in | |
let INT_LE_CONV = FIRST_CONV | |
[GEN_REWRITE_CONV I [pth_le1]; | |
GEN_REWRITE_CONV I [pth_le2a; pth_le2b] THENC NUM_LE_CONV; | |
GEN_REWRITE_CONV I [pth_le3] THENC NUM2_EQ_CONV] in | |
let [pth_lt1; pth_lt2a; pth_lt2b; pth_lt3] = (CONJUNCTS o prove) | |
(`(&m < --(&n) <=> F) /\ | |
(&m < &n <=> m < n) /\ | |
(--(&m) < --(&n) <=> n < m) /\ | |
(--(&m) < &n <=> ~((m = 0) /\ (n = 0)))`, | |
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; | |
GSYM NOT_LE; GSYM INT_NOT_LE] THEN | |
CONV_TAC TAUT) in | |
let INT_LT_CONV = FIRST_CONV | |
[GEN_REWRITE_CONV I [pth_lt1]; | |
GEN_REWRITE_CONV I [pth_lt2a; pth_lt2b] THENC NUM_LT_CONV; | |
GEN_REWRITE_CONV I [pth_lt3] THENC NUM2_NE_CONV] in | |
let [pth_ge1; pth_ge2a; pth_ge2b; pth_ge3] = (CONJUNCTS o prove) | |
(`(&m >= --(&n) <=> T) /\ | |
(&m >= &n <=> n <= m) /\ | |
(--(&m) >= --(&n) <=> m <= n) /\ | |
(--(&m) >= &n <=> (m = 0) /\ (n = 0))`, | |
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; INT_GE] THEN | |
CONV_TAC TAUT) in | |
let INT_GE_CONV = FIRST_CONV | |
[GEN_REWRITE_CONV I [pth_ge1]; | |
GEN_REWRITE_CONV I [pth_ge2a; pth_ge2b] THENC NUM_LE_CONV; | |
GEN_REWRITE_CONV I [pth_ge3] THENC NUM2_EQ_CONV] in | |
let [pth_gt1; pth_gt2a; pth_gt2b; pth_gt3] = (CONJUNCTS o prove) | |
(`(--(&m) > &n <=> F) /\ | |
(&m > &n <=> n < m) /\ | |
(--(&m) > --(&n) <=> m < n) /\ | |
(&m > --(&n) <=> ~((m = 0) /\ (n = 0)))`, | |
REWRITE_TAC[pth_lt1; pth_lt2a; pth_lt2b; pth_lt3; INT_GT] THEN | |
CONV_TAC TAUT) in | |
let INT_GT_CONV = FIRST_CONV | |
[GEN_REWRITE_CONV I [pth_gt1]; | |
GEN_REWRITE_CONV I [pth_gt2a; pth_gt2b] THENC NUM_LT_CONV; | |
GEN_REWRITE_CONV I [pth_gt3] THENC NUM2_NE_CONV] in | |
let [pth_eq1a; pth_eq1b; pth_eq2a; pth_eq2b] = (CONJUNCTS o prove) | |
(`((&m = &n) <=> (m = n)) /\ | |
((--(&m) = --(&n)) <=> (m = n)) /\ | |
((--(&m) = &n) <=> (m = 0) /\ (n = 0)) /\ | |
((&m = --(&n)) <=> (m = 0) /\ (n = 0))`, | |
REWRITE_TAC[GSYM INT_LE_ANTISYM; GSYM LE_ANTISYM] THEN | |
REWRITE_TAC[pth_le1; pth_le2a; pth_le2b; pth_le3; LE; LE_0] THEN | |
CONV_TAC TAUT) in | |
let INT_EQ_CONV = FIRST_CONV | |
[GEN_REWRITE_CONV I [pth_eq1a; pth_eq1b] THENC NUM_EQ_CONV; | |
GEN_REWRITE_CONV I [pth_eq2a; pth_eq2b] THENC NUM2_EQ_CONV] in | |
INT_LE_CONV,INT_LT_CONV, | |
INT_GE_CONV,INT_GT_CONV,INT_EQ_CONV;; | |
let INT_NEG_CONV = | |
let pth = prove | |
(`(--(&0) = &0) /\ | |
(--(--(&x)) = &x)`, | |
REWRITE_TAC[INT_NEG_NEG; INT_NEG_0]) in | |
GEN_REWRITE_CONV I [pth];; | |
let INT_MUL_CONV = | |
let pth0 = prove | |
(`(&0 * &x = &0) /\ | |
(&0 * --(&x) = &0) /\ | |
(&x * &0 = &0) /\ | |
(--(&x) * &0 = &0)`, | |
REWRITE_TAC[INT_MUL_LZERO; INT_MUL_RZERO]) | |
and pth1,pth2 = (CONJ_PAIR o prove) | |
(`((&m * &n = &(m * n)) /\ | |
(--(&m) * --(&n) = &(m * n))) /\ | |
((--(&m) * &n = --(&(m * n))) /\ | |
(&m * --(&n) = --(&(m * n))))`, | |
REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN | |
REWRITE_TAC[INT_OF_NUM_MUL]) in | |
FIRST_CONV | |
[GEN_REWRITE_CONV I [pth0]; | |
GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_MULT_CONV; | |
GEN_REWRITE_CONV I [pth2] THENC RAND_CONV(RAND_CONV NUM_MULT_CONV)];; | |
let INT_ADD_CONV = | |
let neg_tm = `(--)` in | |
let amp_tm = `&` in | |
let add_tm = `(+)` in | |
let dest = dest_binop `(+)` in | |
let m_tm = `m:num` and n_tm = `n:num` in | |
let pth0 = prove | |
(`(--(&m) + &m = &0) /\ | |
(&m + --(&m) = &0)`, | |
REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV]) in | |
let [pth1; pth2; pth3; pth4; pth5; pth6] = (CONJUNCTS o prove) | |
(`(--(&m) + --(&n) = --(&(m + n))) /\ | |
(--(&m) + &(m + n) = &n) /\ | |
(--(&(m + n)) + &m = --(&n)) /\ | |
(&(m + n) + --(&m) = &n) /\ | |
(&m + --(&(m + n)) = --(&n)) /\ | |
(&m + &n = &(m + n))`, | |
REWRITE_TAC[GSYM INT_OF_NUM_ADD; INT_NEG_ADD] THEN | |
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN | |
REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID] THEN | |
ONCE_REWRITE_TAC[INT_ADD_SYM] THEN | |
REWRITE_TAC[INT_ADD_ASSOC; INT_ADD_LINV; INT_ADD_LID] THEN | |
REWRITE_TAC[INT_ADD_RINV; INT_ADD_LID]) in | |
GEN_REWRITE_CONV I [pth0] ORELSEC | |
(fun tm -> | |
try let l,r = dest tm in | |
if rator l = neg_tm then | |
if rator r = neg_tm then | |
let th1 = INST [rand(rand l),m_tm; rand(rand r),n_tm] pth1 in | |
let tm1 = rand(rand(rand(concl th1))) in | |
let th2 = AP_TERM neg_tm (AP_TERM amp_tm (NUM_ADD_CONV tm1)) in | |
TRANS th1 th2 | |
else | |
let m = rand(rand l) and n = rand r in | |
let m' = dest_numeral m and n' = dest_numeral n in | |
if m' <=/ n' then | |
let p = mk_numeral (n' -/ m') in | |
let th1 = INST [m,m_tm; p,n_tm] pth2 in | |
let th2 = NUM_ADD_CONV (rand(rand(lhand(concl th1)))) in | |
let th3 = AP_TERM (rator tm) (AP_TERM amp_tm (SYM th2)) in | |
TRANS th3 th1 | |
else | |
let p = mk_numeral (m' -/ n') in | |
let th1 = INST [n,m_tm; p,n_tm] pth3 in | |
let th2 = NUM_ADD_CONV (rand(rand(lhand(lhand(concl th1))))) in | |
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in | |
let th4 = AP_THM (AP_TERM add_tm th3) (rand tm) in | |
TRANS th4 th1 | |
else | |
if rator r = neg_tm then | |
let m = rand l and n = rand(rand r) in | |
let m' = dest_numeral m and n' = dest_numeral n in | |
if n' <=/ m' then | |
let p = mk_numeral (m' -/ n') in | |
let th1 = INST [n,m_tm; p,n_tm] pth4 in | |
let th2 = NUM_ADD_CONV (rand(lhand(lhand(concl th1)))) in | |
let th3 = AP_TERM add_tm (AP_TERM amp_tm (SYM th2)) in | |
let th4 = AP_THM th3 (rand tm) in | |
TRANS th4 th1 | |
else | |
let p = mk_numeral (n' -/ m') in | |
let th1 = INST [m,m_tm; p,n_tm] pth5 in | |
let th2 = NUM_ADD_CONV (rand(rand(rand(lhand(concl th1))))) in | |
let th3 = AP_TERM neg_tm (AP_TERM amp_tm (SYM th2)) in | |
let th4 = AP_TERM (rator tm) th3 in | |
TRANS th4 th1 | |
else | |
let th1 = INST [rand l,m_tm; rand r,n_tm] pth6 in | |
let tm1 = rand(rand(concl th1)) in | |
let th2 = AP_TERM amp_tm (NUM_ADD_CONV tm1) in | |
TRANS th1 th2 | |
with Failure _ -> failwith "INT_ADD_CONV");; | |
let INT_SUB_CONV = | |
GEN_REWRITE_CONV I [INT_SUB] THENC | |
TRY_CONV(RAND_CONV INT_NEG_CONV) THENC | |
INT_ADD_CONV;; | |
let INT_POW_CONV = | |
let n = `n:num` and x = `x:num` in | |
let pth1,pth2 = (CONJ_PAIR o prove) | |
(`(&x pow n = &(x EXP n)) /\ | |
((--(&x)) pow n = if EVEN n then &(x EXP n) else --(&(x EXP n)))`, | |
REWRITE_TAC[INT_OF_NUM_POW; INT_POW_NEG]) in | |
let tth = prove | |
(`((if T then x:int else y) = x) /\ ((if F then x:int else y) = y)`, | |
REWRITE_TAC[]) in | |
let neg_tm = `(--)` in | |
(GEN_REWRITE_CONV I [pth1] THENC RAND_CONV NUM_EXP_CONV) ORELSEC | |
(GEN_REWRITE_CONV I [pth2] THENC | |
RATOR_CONV(RATOR_CONV(RAND_CONV NUM_EVEN_CONV)) THENC | |
GEN_REWRITE_CONV I [tth] THENC | |
(fun tm -> if rator tm = neg_tm then RAND_CONV(RAND_CONV NUM_EXP_CONV) tm | |
else RAND_CONV NUM_EXP_CONV tm));; | |
(* ------------------------------------------------------------------------- *) | |
(* Handy utility functions for int arithmetic terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let dest_add = dest_binop `(+)`;; | |
let dest_mul = dest_binop `(*)`;; | |
let dest_pow = dest_binop `(pow)`;; | |
let dest_sub = dest_binop `(-)`;; | |
let is_add = is_binop `(+)`;; | |
let is_mul = is_binop `(*)`;; | |
let is_pow = is_binop `(pow)`;; | |
let is_sub = is_binop `(-)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Instantiate the normalizer. *) | |
(* ------------------------------------------------------------------------- *) | |
let POLYNOMIAL_NORMALIZERS = | |
let sth = prove | |
(`(!x y z. x + (y + z) = (x + y) + z) /\ | |
(!x y. x + y = y + x) /\ | |
(!x. &0 + x = x) /\ | |
(!x y z. x * (y * z) = (x * y) * z) /\ | |
(!x y. x * y = y * x) /\ | |
(!x. &1 * x = x) /\ | |
(!x. &0 * x = &0) /\ | |
(!x y z. x * (y + z) = x * y + x * z) /\ | |
(!x. x pow 0 = &1) /\ | |
(!x n. x pow (SUC n) = x * x pow n)`, | |
REWRITE_TAC[INT_POW] THEN INT_ARITH_TAC) | |
and rth = prove | |
(`(!x. --x = --(&1) * x) /\ | |
(!x y. x - y = x + --(&1) * y)`, | |
INT_ARITH_TAC) | |
and is_semiring_constant = is_int_const | |
and SEMIRING_ADD_CONV = INT_ADD_CONV | |
and SEMIRING_MUL_CONV = INT_MUL_CONV | |
and SEMIRING_POW_CONV = INT_POW_CONV in | |
let NORMALIZERS = | |
SEMIRING_NORMALIZERS_CONV sth rth | |
(is_semiring_constant, | |
SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV) in | |
fun vars -> NORMALIZERS(earlier vars);; | |
let POLYNOMIAL_NEG_CONV vars = | |
let cnv,_,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
let POLYNOMIAL_ADD_CONV vars = | |
let _,cnv,_,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
let POLYNOMIAL_SUB_CONV vars = | |
let _,_,cnv,_,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
let POLYNOMIAL_MUL_CONV vars = | |
let _,_,_,cnv,_,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
let POLYNOMIAL_POW_CONV vars = | |
let _,_,_,_,cnv,_ = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
let POLYNOMIAL_CONV vars = | |
let _,_,_,_,_,cnv = POLYNOMIAL_NORMALIZERS vars in cnv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Slight variants of these functions for procedure below. *) | |
(* ------------------------------------------------------------------------- *) | |
let LINEAR_CMUL = | |
let mul_tm = `(*)` in | |
fun vars n tm -> | |
POLYNOMIAL_MUL_CONV vars (mk_comb(mk_comb(mul_tm,mk_int_const n),tm));; | |
(* ------------------------------------------------------------------------- *) | |
(* Linearize a formula, dealing with non-strict inequalities. *) | |
(* ------------------------------------------------------------------------- *) | |
let LINEARIZE_CONV = | |
let rew_conv = GEN_REWRITE_CONV I | |
[CONJ (REFL `c divides e`) | |
(INT_ARITH | |
`(s < t <=> &0 < t - s) /\ | |
(~(s < t) <=> &0 < (s + &1) - t) /\ | |
(s > t <=> &0 < s - t) /\ | |
(~(s > t) <=> &0 < (t + &1) - s) /\ | |
(s <= t <=> &0 < (t + &1) - s) /\ | |
(~(s <= t) <=> &0 < s - t) /\ | |
(s >= t <=> &0 < (s + &1) - t) /\ | |
(~(s >= t) <=> &0 < t - s) /\ | |
((s = t) <=> (&0 = s - t))`)] | |
and true_tm = `T` and false_tm = `F` in | |
let rec conv vars tm = | |
try (rew_conv THENC RAND_CONV(POLYNOMIAL_CONV vars)) tm with Failure _ -> | |
if is_exists tm || is_forall tm then | |
let x = bndvar(rand tm) in BINDER_CONV (conv (x::vars)) tm | |
else if is_neg tm then | |
RAND_CONV (conv vars) tm | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
BINOP_CONV (conv vars) tm | |
else if tm = true_tm || tm = false_tm then REFL tm | |
else failwith "LINEARIZE_CONV: Unexpected term type" in | |
conv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Get the coefficient of x, assumed to be first term, if there at all. *) | |
(* ------------------------------------------------------------------------- *) | |
let coefficient x tm = | |
try let l,r = dest_add tm in | |
if l = x then Int 1 else | |
let c,y = dest_mul l in | |
if y = x then dest_int_const c else Int 0 | |
with Failure _ -> try | |
let c,y = dest_mul tm in | |
if y = x then dest_int_const c else Int 0 | |
with Failure _ -> Int 1;; | |
(* ------------------------------------------------------------------------- *) | |
(* Find (always positive) LCM of all the multiples of x in formula tm. *) | |
(* ------------------------------------------------------------------------- *) | |
let lcm_num x y = abs_num((x */ y) // gcd_num x y);; | |
let rec formlcm x tm = | |
if is_neg tm then formlcm x (rand tm) | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
lcm_num (formlcm x (lhand tm)) (formlcm x (rand tm)) | |
else if is_forall tm || is_exists tm then | |
formlcm x (body(rand tm)) | |
else if not(mem x (frees tm)) then Int 1 | |
else let c = coefficient x (rand tm) in | |
if c =/ Int 0 then Int 1 else c;; | |
(* ------------------------------------------------------------------------- *) | |
(* Switch from "x [+ ...]" to "&1 * x [+ ...]" to suit later proforma. *) | |
(* ------------------------------------------------------------------------- *) | |
let MULTIPLY_1_CONV = | |
let conv_0 = REWR_CONV(INT_ARITH `x = &1 * x`) | |
and conv_1 = REWR_CONV(INT_ARITH `x + a = &1 * x + a`) in | |
fun vars tm -> | |
let x = hd vars in | |
if tm = x then conv_0 tm | |
else if is_add tm && lhand tm = x then conv_1 tm | |
else REFL tm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Adjust all coefficients of x (head variable) to match l in formula tm. *) | |
(* ------------------------------------------------------------------------- *) | |
let ADJUSTCOEFF_CONV = | |
let op_eq = `(=):int->int->bool` | |
and op_lt = `(<):int->int->bool` | |
and op_gt = `(>):int->int->bool` | |
and op_divides = `(divides):int->int->bool` | |
and c_tm = `c:int` | |
and d_tm = `d:int` | |
and e_tm = `e:int` in | |
let pth_divides = prove | |
(`~(d = &0) ==> (c divides e <=> (d * c) divides (d * e))`, | |
SIMP_TAC[divides; GSYM INT_MUL_ASSOC; INT_EQ_MUL_LCANCEL]) | |
and pth_eq = prove | |
(`~(d = &0) ==> ((&0 = e) <=> (&0 = d * e))`, | |
DISCH_TAC THEN CONV_TAC(BINOP_CONV SYM_CONV) THEN | |
ASM_REWRITE_TAC[INT_ENTIRE]) | |
and pth_lt_pos = prove | |
(`&0 < d ==> (&0 < e <=> &0 < d * e)`, | |
DISCH_TAC THEN SUBGOAL_THEN `&0 < e <=> d * &0 < d * e` SUBST1_TAC THENL | |
[ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]]) | |
and pth_gt_pos = prove | |
(`&0 < d ==> (&0 > e <=> &0 > d * e)`, | |
DISCH_TAC THEN REWRITE_TAC[INT_GT] THEN | |
SUBGOAL_THEN `e < &0 <=> d * e < d * &0` SUBST1_TAC THENL | |
[ASM_SIMP_TAC[INT_LT_LMUL_EQ]; REWRITE_TAC[INT_MUL_RZERO]]) | |
and true_tm = `T` and false_tm = `F` in | |
let pth_lt_neg = prove | |
(`d < &0 ==> (&0 < e <=> &0 > d * e)`, | |
REWRITE_TAC[INT_ARITH `&0 > d * e <=> &0 < --d * e`; | |
INT_ARITH `d < &0 <=> &0 < --d`; pth_lt_pos]) | |
and pth_gt_neg = prove | |
(`d < &0 ==> (&0 > e <=> &0 < d * e)`, | |
REWRITE_TAC[INT_ARITH `&0 < d * e <=> &0 > --d * e`; | |
INT_ARITH `d < &0 <=> &0 < --d`; pth_gt_pos]) in | |
let rec ADJUSTCOEFF_CONV vars l tm = | |
if tm = true_tm || tm = false_tm then REFL tm | |
else if is_exists tm || is_forall tm then | |
BINDER_CONV (ADJUSTCOEFF_CONV vars l) tm | |
else if is_neg tm then | |
RAND_CONV (ADJUSTCOEFF_CONV vars l) tm | |
else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then | |
BINOP_CONV (ADJUSTCOEFF_CONV vars l) tm | |
else | |
let lop,t = dest_comb tm in | |
let op,z = dest_comb lop in | |
let c = coefficient (hd vars) t in | |
if c =/ Int 0 then REFL tm else | |
let th1 = | |
if c =/ l then REFL tm else | |
let m = l // c in | |
let th0 = if op = op_eq then pth_eq | |
else if op = op_divides then pth_divides | |
else if op = op_lt then | |
if m >/ Int 0 then pth_lt_pos else pth_lt_neg | |
else if op = op_gt then | |
if m >/ Int 0 then pth_gt_pos else pth_gt_neg | |
else failwith "ADJUSTCOEFF_CONV: unknown predicate" in | |
let th1 = INST [mk_int_const m,d_tm; z,c_tm; t,e_tm] th0 in | |
let tm1 = lhand(concl th1) in | |
let th2 = if is_neg tm1 then EQF_ELIM(INT_EQ_CONV(rand tm1)) | |
else EQT_ELIM(INT_LT_CONV tm1) in | |
let th3 = MP th1 th2 in | |
if op = op_divides then | |
let th3 = MP th1 th2 in | |
let tm2 = rand(concl th3) in | |
let l,r = dest_comb tm2 in | |
let th4 = AP_TERM (rator l) (INT_MUL_CONV (rand l)) in | |
let th5 = AP_THM th4 r in | |
let tm3 = rator(rand(concl th5)) in | |
let th6 = TRANS th5 (AP_TERM tm3 (LINEAR_CMUL vars m t)) in | |
TRANS th3 th6 | |
else | |
let tm2 = rator(rand(concl th3)) in | |
TRANS th3 (AP_TERM tm2 (LINEAR_CMUL vars m t)) in | |
if l =/ Int 1 then | |
CONV_RULE(funpow 2 RAND_CONV (MULTIPLY_1_CONV vars)) th1 | |
else th1 in | |
ADJUSTCOEFF_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now normalize all the x terms to have same coefficient and eliminate it. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORMALIZE_COEFF_CONV = | |
let c_tm = `c:int` | |
and pth = prove | |
(`(?x. P(c * x)) <=> (?x. c divides x /\ P x)`, | |
REWRITE_TAC[GSYM EXISTS_MULTIPLE_THM]) in | |
let NORMALIZE_COEFF_CONV vars tm = | |
let x,bod = dest_exists tm in | |
let l = formlcm x tm in | |
let th1 = ADJUSTCOEFF_CONV (x::vars) l tm in | |
let th2 = if l =/ Int 1 then EXISTS_MULTIPLE_THM_1 | |
else INST [mk_int_const l,c_tm] pth in | |
TRANS th1 (REWR_CONV th2 (rand(concl th1))) in | |
NORMALIZE_COEFF_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Convert to shadow syntax. *) | |
(* ------------------------------------------------------------------------- *) | |
let SHADOW_CONV = | |
let pth_trivial = prove | |
(`P = interp x (Nox P)`, | |
REWRITE_TAC[interp]) | |
and pth_composite = prove | |
(`(interp x p /\ interp x q <=> interp x (And p q)) /\ | |
(interp x p \/ interp x q <=> interp x (Or p q))`, | |
REWRITE_TAC[interp]) | |
and pth_literal_nontrivial = prove | |
(`(&0 > x + e <=> interp x (Lt e)) /\ | |
(&0 < x + e <=> interp x (Gt e)) /\ | |
((&0 = x + e) <=> interp x (Eq e)) /\ | |
(~(&0 = x + e) <=> interp x (Ne e)) /\ | |
(c divides (x + e) <=> interp x (Divides c e)) /\ | |
(~(c divides (x + e)) <=> interp x (Ndivides c e))`, | |
REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC) | |
and pth_literal_trivial = prove | |
(`(&0 > x <=> interp x (Lt(&0))) /\ | |
(&0 < x <=> interp x (Gt(&0))) /\ | |
((&0 = x) <=> interp x (Eq(&0))) /\ | |
(~(&0 = x) <=> interp x (Ne(&0))) /\ | |
(c divides x <=> interp x (Divides c (&0))) /\ | |
(~(c divides x) <=> interp x (Ndivides c (&0)))`, | |
REWRITE_TAC[interp; INT_ADD_RID] THEN INT_ARITH_TAC) in | |
let rewr_composite = GEN_REWRITE_CONV I [pth_composite] | |
and rewr_literal = GEN_REWRITE_CONV I [pth_literal_nontrivial] ORELSEC | |
GEN_REWRITE_CONV I [pth_literal_trivial] | |
and x_tm = `x:int` and p_tm = `P:bool` in | |
let rec SHADOW_CONV x tm = | |
if not (mem x (frees tm)) then | |
INST [tm,p_tm; x,x_tm] pth_trivial | |
else if is_conj tm || is_disj tm then | |
let l,r = try dest_conj tm with Failure _ -> dest_disj tm in | |
let thl = SHADOW_CONV x l and thr = SHADOW_CONV x r in | |
let th1 = MK_COMB(AP_TERM (rator(rator tm)) thl,thr) in | |
TRANS th1 (rewr_composite(rand(concl th1))) | |
else rewr_literal tm in | |
fun tm -> | |
let x,bod = dest_exists tm in | |
MK_EXISTS x (SHADOW_CONV x bod);; | |
(* ------------------------------------------------------------------------- *) | |
(* Get the LCM of the dividing things. *) | |
(* ------------------------------------------------------------------------- *) | |
let dplcm = | |
let divides_tm = `Divides` | |
and ndivides_tm = `Ndivides` | |
and and_tm = `And` | |
and or_tm = `Or` in | |
let rec dplcm tm = | |
let hop,args = strip_comb tm in | |
if hop = divides_tm || hop = ndivides_tm then dest_int_const (hd args) | |
else if hop = and_tm || hop = or_tm | |
then end_itlist lcm_num (map dplcm args) | |
else Int 1 in | |
dplcm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion for true formulas "(--) &m divides (--) &n". *) | |
(* ------------------------------------------------------------------------- *) | |
let PROVE_DIVIDES_CONV_POS = | |
let pth = prove | |
(`(p * m = n) ==> &p divides &n`, | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[divides] THEN EXISTS_TAC `&m` THEN | |
REWRITE_TAC[INT_OF_NUM_MUL]) | |
and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in | |
fun tm -> | |
let n = rand(rand tm) | |
and p = rand(lhand tm) in | |
let m = mk_numeral(dest_numeral n // dest_numeral p) in | |
let th1 = INST [m,m_tm; n,n_tm; p,p_tm] pth in | |
EQT_INTRO(MP th1 (NUM_MULT_CONV (lhand(lhand(concl th1)))));; | |
let PROVE_DIVIDES_CONV = | |
GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC | |
PROVE_DIVIDES_CONV_POS;; | |
(* ------------------------------------------------------------------------- *) | |
(* General version that works for positive and negative. *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_DIVIDES_NUM = prove | |
(`&p divides &n <=> ?m. (n = p * m)`, | |
REWRITE_TAC[divides] THEN EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `x:int` MP_TAC) THEN | |
DISJ_CASES_THEN(X_CHOOSE_THEN `q:num` SUBST1_TAC) | |
(SPEC `x:int` INT_IMAGE) THEN | |
DISCH_THEN(MP_TAC o AP_TERM `abs:int->int`) THEN | |
REWRITE_TAC[INT_ABS_MUL; INT_ABS_NUM; INT_ABS_NEG] THEN | |
REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_EQ] THEN MESON_TAC[]; | |
MESON_TAC[INT_OF_NUM_MUL]]);; | |
let INT_DIVIDES_POS_CONV = | |
let pth = prove | |
(`(&p divides &n) <=> (p = 0) /\ (n = 0) \/ ~(p = 0) /\ (n MOD p = 0)`, | |
REWRITE_TAC[INT_DIVIDES_NUM] THEN | |
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN EQ_TAC THENL | |
[ASM_MESON_TAC[MOD_MULT]; | |
DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES] THEN MESON_TAC[MULT_SYM]]) in | |
GEN_REWRITE_CONV I [pth] THENC NUM_REDUCE_CONV;; | |
let INT_DIVIDES_CONV = | |
GEN_REWRITE_CONV REPEATC [DIVIDES_LNEG; DIVIDES_RNEG] THENC | |
INT_DIVIDES_POS_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion for "alldivide d p" (which should be true!) *) | |
(* ------------------------------------------------------------------------- *) | |
let ALLDIVIDE_CONV = | |
let pth_atom = prove | |
(`(alldivide d (Lt e) <=> T) /\ | |
(alldivide d (Gt e) <=> T) /\ | |
(alldivide d (Eq e) <=> T) /\ | |
(alldivide d (Ne e) <=> T) /\ | |
(alldivide d (Nox P) <=> T)`, | |
REWRITE_TAC[alldivide]) | |
and pth_div = prove | |
(`(alldivide d (Divides c e) <=> c divides d) /\ | |
(alldivide d (Ndivides c e) <=> c divides d)`, | |
REWRITE_TAC[alldivide]) | |
and pth_comp = prove | |
(`(alldivide d (And p q) <=> alldivide d p /\ alldivide d q) /\ | |
(alldivide d (Or p q) <=> alldivide d p /\ alldivide d q)`, | |
REWRITE_TAC[alldivide]) | |
and pth_taut = TAUT `(T /\ T <=> T)` in | |
let basnet = | |
itlist (fun th -> enter [] (lhand(concl th),REWR_CONV th)) | |
(CONJUNCTS pth_atom) | |
(itlist (fun th -> enter [] (lhand(concl th), | |
REWR_CONV th THENC PROVE_DIVIDES_CONV)) | |
(CONJUNCTS pth_div) empty_net) | |
and comp_rewr = GEN_REWRITE_CONV I [pth_comp] in | |
let rec alldivide_conv tm = | |
try tryfind (fun f -> f tm) (lookup tm basnet) with Failure _ -> | |
let th = (comp_rewr THENC BINOP_CONV alldivide_conv) tm in | |
TRANS th pth_taut in | |
alldivide_conv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion for "?b. b IN bset p /\ P b";; *) | |
(* ------------------------------------------------------------------------- *) | |
let EXISTS_IN_BSET_CONV = | |
let pth_false = prove | |
(`((?b. b IN bset (Lt e) /\ P b) <=> F) /\ | |
((?b. b IN bset (Divides c e) /\ P b) <=> F) /\ | |
((?b. b IN bset (Ndivides c e) /\ P b) <=> F) /\ | |
((?b. b IN bset(Nox Q) /\ P b) <=> F)`, | |
REWRITE_TAC[bset; NOT_IN_EMPTY]) | |
and pth_neg = prove | |
(`((?b. b IN bset (Gt e) /\ P b) <=> P(--e)) /\ | |
((?b. b IN bset (Ne e) /\ P b) <=> P(--e))`, | |
REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2]) | |
and pth_add = prove | |
(`(?b. b IN bset (Eq e) /\ P b) <=> P(--(e + &1))`, | |
REWRITE_TAC[bset; IN_SING; INT_MUL_LID; UNWIND_THM2]) | |
and pth_comp = prove | |
(`((?b. b IN bset (And p q) /\ P b) <=> | |
(?b. b IN bset p /\ P b) \/ | |
(?b. b IN bset q /\ P b)) /\ | |
((?b. b IN bset (Or p q) /\ P b) <=> | |
(?b. b IN bset p /\ P b) \/ | |
(?b. b IN bset q /\ P b))`, | |
REWRITE_TAC[bset; IN_UNION] THEN MESON_TAC[]) | |
and taut = TAUT `(F \/ P <=> P) /\ (P \/ F <=> P)` in | |
let conv_neg vars = | |
LAND_CONV(LAND_CONV(POLYNOMIAL_NEG_CONV vars)) | |
and conv_add vars = | |
LAND_CONV(LAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars) THENC | |
POLYNOMIAL_NEG_CONV vars)) | |
and conv_comp = GEN_REWRITE_CONV I [pth_comp] in | |
let net1 = | |
itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th))) | |
(CONJUNCTS pth_false) empty_net in | |
let net2 = | |
itlist (fun th -> enter [] (lhand(concl th), | |
let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v)) | |
(CONJUNCTS pth_neg) net1 in | |
let basnet = | |
enter [] (lhand(concl pth_add), | |
let cnv = K (REWR_CONV pth_add) in fun v -> cnv v THENC conv_add v) | |
net2 in | |
let rec baseconv vars tm = | |
try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ -> | |
(conv_comp THENC BINOP_CONV (baseconv vars)) tm in | |
let finconv = | |
GEN_REWRITE_CONV DEPTH_CONV [taut] THENC | |
PURE_REWRITE_CONV [DISJ_ACI] in | |
fun vars tm -> (baseconv vars THENC finconv) tm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Naive conversion for "minusinf p". *) | |
(* ------------------------------------------------------------------------- *) | |
let MINUSINF_CONV = GEN_REWRITE_CONV TOP_SWEEP_CONV [minusinf];; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion for "interp s p" where s is a canonical linear form. *) | |
(* ------------------------------------------------------------------------- *) | |
let INTERP_CONV = | |
let pth_trivial = prove | |
(`interp x (Nox P) <=> P`, | |
REWRITE_TAC[interp]) | |
and pth_comp = prove | |
(`(interp x (And p q) <=> interp x p /\ interp x q) /\ | |
(interp x (Or p q) <=> interp x p \/ interp x q)`, | |
REWRITE_TAC[interp]) | |
and pth_pos,pth_neg = (CONJ_PAIR o prove) | |
(`((interp x (Lt e) <=> &0 > x + e) /\ | |
(interp x (Gt e) <=> &0 < x + e) /\ | |
(interp x (Eq e) <=> (&0 = x + e)) /\ | |
(interp x (Divides c e) <=> c divides (x + e))) /\ | |
((interp x (Ne e) <=> ~(&0 = x + e)) /\ | |
(interp x (Ndivides c e) <=> ~(c divides (x + e))))`, | |
REWRITE_TAC[interp] THEN INT_ARITH_TAC) in | |
let conv_pos vars = RAND_CONV(POLYNOMIAL_ADD_CONV vars) | |
and conv_neg vars = RAND_CONV(RAND_CONV(POLYNOMIAL_ADD_CONV vars)) | |
and conv_comp = GEN_REWRITE_CONV I [pth_comp] in | |
let net1 = | |
itlist (fun th -> enter [] (lhand(concl th),K (REWR_CONV th))) | |
(CONJUNCTS pth_trivial) empty_net in | |
let net2 = | |
itlist (fun th -> enter [] (lhand(concl th), | |
let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_pos v)) | |
(CONJUNCTS pth_pos) net1 in | |
let basnet = | |
itlist (fun th -> enter [] (lhand(concl th), | |
let cnv = K (REWR_CONV th) in fun v -> cnv v THENC conv_neg v)) | |
(CONJUNCTS pth_neg) net2 in | |
let rec baseconv vars tm = | |
try tryfind (fun f -> f vars tm) (lookup tm basnet) with Failure _ -> | |
(conv_comp THENC BINOP_CONV (baseconv vars)) tm in | |
baseconv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Expand `?j. &1 <= j /\ j <= &[n] /\ P[j]` cases. *) | |
(* ------------------------------------------------------------------------- *) | |
let EXPAND_INT_CASES_CONV = | |
let pth_base = prove | |
(`(?j. n <= j /\ j <= n /\ P(j)) <=> P(n)`, | |
MESON_TAC[INT_LE_ANTISYM]) | |
and pth_step = prove | |
(`(?j. &1 <= j /\ j <= &(SUC n) /\ P(j)) <=> | |
(?j. &1 <= j /\ j <= &n /\ P(j)) \/ P(&(SUC n))`, | |
REWRITE_TAC[GSYM INT_OF_NUM_SUC] THEN | |
REWRITE_TAC[INT_ARITH `x <= y + &1 <=> (x = y + &1) \/ x < y + &1`] THEN | |
REWRITE_TAC[INT_LT_DISCRETE; INT_LE_RADD] THEN | |
MESON_TAC[INT_ARITH `&0 <= x ==> &1 <= x + &1`; INT_POS; INT_LE_REFL]) in | |
let base_conv = REWR_CONV pth_base | |
and step_conv = | |
BINDER_CONV(RAND_CONV(LAND_CONV(funpow 2 RAND_CONV num_CONV))) THENC | |
REWR_CONV pth_step THENC | |
RAND_CONV(ONCE_DEPTH_CONV NUM_SUC_CONV) in | |
let rec conv tm = | |
try base_conv tm with Failure _ -> | |
(step_conv THENC LAND_CONV conv) tm in | |
conv;; | |
(* ------------------------------------------------------------------------- *) | |
(* Canonicalize "t + c" in all "interp (t + c) P"s assuming t is canonical. *) | |
(* ------------------------------------------------------------------------- *) | |
let CANON_INTERP_ADD = | |
let pat = `interp (t + c) P` in | |
fun vars -> | |
let net = net_of_conv pat (LAND_CONV(POLYNOMIAL_ADD_CONV vars)) | |
empty_net in | |
ONCE_DEPTH_CONV(REWRITES_CONV net);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion to evaluate constant expressions. *) | |
(* ------------------------------------------------------------------------- *) | |
let EVAL_CONSTANT_CONV = | |
let net = | |
itlist (uncurry net_of_conv) | |
([`x < y`,INT_LT_CONV; | |
`x > y`,INT_GT_CONV; | |
`x:int = y`,INT_EQ_CONV; | |
`x divides y`,INT_DIVIDES_CONV] @ | |
map (fun t -> t,REWR_CONV(REWRITE_CONV[] t)) | |
[`~F`; `~T`; `a /\ T`; `T /\ a`; `a /\ F`; `F /\ a`; | |
`a \/ T`; `T \/ a`; `a \/ F`; `F \/ a`]) | |
empty_net in | |
DEPTH_CONV(REWRITES_CONV net);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic quantifier elimination conversion. *) | |
(* ------------------------------------------------------------------------- *) | |
let BASIC_COOPER_CONV = | |
let p_tm = `p:cform` | |
and d_tm = `d:int` in | |
let pth_B = SPECL [p_tm; d_tm] MAINTHM_B in | |
fun vars tm -> | |
let x,bod = dest_exists tm in | |
let th1 = (NORMALIZE_COEFF_CONV vars THENC SHADOW_CONV) tm in | |
let p = rand(snd(dest_exists(rand(concl th1)))) in | |
let th2 = INST [p,p_tm; mk_int_const(dplcm p),d_tm] pth_B in | |
let tm2a,tm2b = dest_conj(lhand(concl th2)) in | |
let th3 = | |
CONJ (EQT_ELIM(ALLDIVIDE_CONV tm2a)) (EQT_ELIM(INT_LT_CONV tm2b)) in | |
let th4 = TRANS th1 (MP th2 th3) in | |
let th5 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 2 RAND_CONV(LAND_CONV | |
MINUSINF_CONV)))) th4 in | |
let th6 = CONV_RULE(RAND_CONV(BINDER_CONV(funpow 3 RAND_CONV | |
(EXISTS_IN_BSET_CONV vars)))) th5 in | |
let th7 = CONV_RULE(RAND_CONV EXPAND_INT_CASES_CONV) th6 in | |
let th8 = CONV_RULE(RAND_CONV(CANON_INTERP_ADD vars)) th7 in | |
let th9 = CONV_RULE(RAND_CONV(ONCE_DEPTH_CONV(INTERP_CONV vars))) th8 in | |
CONV_RULE(RAND_CONV EVAL_CONSTANT_CONV) th9;; | |
(* ------------------------------------------------------------------------- *) | |
(* NNF transformation that also eliminates negated inequalities. *) | |
(* ------------------------------------------------------------------------- *) | |
let NNF_POSINEQ_CONV = | |
let pth = prove | |
(`(~(&0 < x) <=> &0 < &1 - x) /\ | |
(~(&0 > x) <=> &0 < &1 + x)`, | |
REWRITE_TAC[INT_NOT_LT; INT_GT] THEN | |
REWRITE_TAC[INT_LT_DISCRETE; INT_GT_DISCRETE] THEN | |
INT_ARITH_TAC) in | |
let conv1 vars = REWR_CONV(CONJUNCT1 pth) THENC | |
RAND_CONV (POLYNOMIAL_SUB_CONV vars) | |
and conv2 vars = REWR_CONV(CONJUNCT2 pth) THENC | |
RAND_CONV (POLYNOMIAL_ADD_CONV vars) | |
and pat1 = `~(&0 < x)` and pat2 = `~(&0 > x)` | |
and net = itlist (fun t -> net_of_conv (lhand t) (REWR_CONV(TAUT t))) | |
[`~(~ p) <=> p`; `~(p /\ q) <=> ~p \/ ~q`; | |
`~(p \/ q) <=> ~p /\ ~q`] empty_net in | |
fun vars -> | |
let net' = net_of_conv pat1 (conv1 vars) | |
(net_of_conv pat2 (conv2 vars) net) in | |
TOP_SWEEP_CONV(REWRITES_CONV net');; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall function. *) | |
(* ------------------------------------------------------------------------- *) | |
let COOPER_CONV = | |
let FORALL_ELIM_CONV = GEN_REWRITE_CONV I | |
[prove(`(!x. P x) <=> ~(?x. ~(P x))`,MESON_TAC[])] | |
and not_tm = `(~)` in | |
let rec conv vars tm = | |
if is_conj tm || is_disj tm then | |
let lop,r = dest_comb tm in | |
let op,l = dest_comb lop in | |
MK_COMB(AP_TERM op (conv vars l),conv vars r) | |
else if is_neg tm then | |
let l,r = dest_comb tm in | |
AP_TERM l (conv vars r) | |
else if is_exists tm then | |
let x,bod = dest_exists tm in | |
let th1 = MK_EXISTS x (conv (x::vars) bod) in | |
TRANS th1 (BASIC_COOPER_CONV vars (rand(concl th1))) | |
else if is_forall tm then | |
let x,bod = dest_forall tm in | |
let th1 = AP_TERM not_tm (conv (x::vars) bod) in | |
let th2 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars))) th1 in | |
let th3 = MK_EXISTS x th2 in | |
let th4 = CONV_RULE(RAND_CONV (BASIC_COOPER_CONV vars)) th3 in | |
let th5 = CONV_RULE(RAND_CONV (NNF_POSINEQ_CONV (x::vars))) | |
(AP_TERM not_tm th4) in | |
TRANS (FORALL_ELIM_CONV tm) th5 | |
else REFL tm in | |
let init_CONV = | |
PRESIMP_CONV THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV | |
[INT_ABS; | |
INT_ARITH `max m n = if m <= n then n else m`; | |
INT_ARITH `min m n = if m <= n then m else n`] THENC | |
CONDS_ELIM_CONV THENC NNF_CONV in | |
fun tm -> | |
let vars = frees tm in | |
let th1 = (init_CONV THENC LINEARIZE_CONV vars) tm in | |
let th2 = TRANS th1 (conv vars (rand(concl th1))) in | |
TRANS th2 (EVAL_CONSTANT_CONV(rand(concl th2)));; | |
(* ------------------------------------------------------------------------- *) | |
(* Examples from the book. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV `!x y. x < y ==> &2 * x + &1 < &2 * y`;; | |
time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;; | |
time COOPER_CONV | |
`?x y. x > &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;; | |
time COOPER_CONV `?x y z. &4 * x - &6 * y = &1`;; | |
time COOPER_CONV `!x. b < x ==> a <= x`;; | |
time COOPER_CONV `!x. a < &3 * x ==> b < &3 * x`;; | |
time COOPER_CONV `!x y. x <= y ==> &2 * x + &1 < &2 * y`;; | |
time COOPER_CONV `(?d. y = &65 * d) ==> (?d. y = &5 * d)`;; | |
time COOPER_CONV `!y. (?d. y = &65 * d) ==> (?d. y = &5 * d)`;; | |
time COOPER_CONV `!x y. ~(&2 * x + &1 = &2 * y)`;; | |
time COOPER_CONV `!x y z. (&2 * x + &1 = &2 * y) ==> x + y + z > &129`;; | |
time COOPER_CONV `!x. a < x ==> b < x`;; | |
time COOPER_CONV `!x. a <= x ==> b < x`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Formula examples from Cooper's paper. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV `!a b. ?x. a < &20 * x /\ &20 * x < b`;; | |
time COOPER_CONV `?x. a < &20 * x /\ &20 * x < b`;; | |
time COOPER_CONV `!b. ?x. a < &20 * x /\ &20 * x < b`;; | |
time COOPER_CONV `!a. ?b. a < &4 * b + &3 * a \/ (~(a < b) /\ a > b + &1)`;; | |
time COOPER_CONV `?y. !x. x + &5 * y > &1 /\ &13 * x - y > &1 /\ x + &2 < &0`;; | |
(* ------------------------------------------------------------------------- *) | |
(* More of my own. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV `!x y. x >= &0 /\ y >= &0 | |
==> &12 * x - &8 * y < &0 \/ &12 * x - &8 * y > &2`;; | |
time COOPER_CONV `?x y. &5 * x + &3 * y = &1`;; | |
time COOPER_CONV `?x y. &5 * x + &10 * y = &1`;; | |
time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &6 * y = &1)`;; | |
time COOPER_CONV `?w x y z. &2 * w + &3 * x + &4 * y + &5 * z = &1`;; | |
time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&5 * x - &3 * y = &1)`;; | |
time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&3 * x - &5 * y = &1)`;; | |
time COOPER_CONV `?x y. x >= &0 /\ y >= &0 /\ (&6 * x - &3 * y = &1)`;; | |
time COOPER_CONV `!x y. ~(x = &0) ==> &5 * y < &6 * x \/ &5 * y > &6 * x`;; | |
time COOPER_CONV | |
`!x y. ~(&5 divides x) /\ ~(&6 divides y) ==> ~(&6 * x = &5 * y)`;; | |
time COOPER_CONV `!x y. ~(&5 divides x) ==> ~(&6 * x = &5 * y)`;; | |
time COOPER_CONV `!x y. ~(&6 * x = &5 * y)`;; | |
time COOPER_CONV `!x y. (&6 * x = &5 * y) ==> (?d. y = &3 * d)`;; | |
time COOPER_CONV `(&6 * x = &5 * y) ==> (?d. y = &3 * d)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Positive variant of the Bezout theorem (see the exercise). *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV | |
`!z. z > &7 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;; | |
time COOPER_CONV | |
`!z. z > &2 ==> ?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)`;; | |
time COOPER_CONV `!z. z <= &7 ==> | |
((?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = z)) <=> | |
~(?x y. x >= &0 /\ y >= &0 /\ (&3 * x + &5 * y = &7 - z)))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic result about congruences. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV `!x. ~(&2 divides x) /\ &3 divides (x - &1) <=> | |
&12 divides (x - &1) \/ &12 divides (x - &7)`;; | |
time COOPER_CONV `!x. ~(?m. x = &2 * m) /\ (?m. x = &3 * m + &1) <=> | |
(?m. x = &12 * m + &1) \/ (?m. x = &12 * m + &7)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Something else. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV | |
`!x. ~(&2 divides x) | |
==> &4 divides (x - &1) \/ | |
&8 divides (x - &1) \/ | |
&8 divides (x - &3) \/ | |
&6 divides (x - &1) \/ | |
&14 divides (x - &1) \/ | |
&14 divides (x - &9) \/ | |
&14 divides (x - &11) \/ | |
&24 divides (x - &5) \/ | |
&24 divides (x - &11)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Testing fix for an earlier version with negative result from formlcm. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV | |
`!a b v_1 v_2 v_3. | |
(a + &2 = b) /\ (v_3 = b - a + &1) /\ (v_2 = b - &2) /\ (v_1 = &3) ==> F`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Inspired by the Collatz conjecture. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV | |
`?a b. ~(a = &1) /\ ((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ | |
(a = b)`;; | |
time COOPER_CONV | |
`?a b. a > &1 /\ b > &1 /\ | |
((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ | |
(a = b)`;; | |
time COOPER_CONV | |
`?b. a > &1 /\ b > &1 /\ | |
((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ | |
((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;; | |
(*************** These seem to take a long time | |
time COOPER_CONV | |
`?a b. a > &1 /\ b > &1 /\ | |
((&2 * b = a) \/ (&2 * b = &3 * a + &1)) /\ | |
((&2 * a = b) \/ (&2 * a = &3 * b + &1))`;; | |
let fm = (dnf ** parse) | |
`((2 * b = a) \/ (2 * b = &3 * a + 1)) /\ | |
((2 * c = b) \/ (2 * c = &3 * b + 1)) /\ | |
((2 * d = c) \/ (2 * d = &3 * c + 1)) /\ | |
((2 * e = d) \/ (2 * e = &3 * d + 1)) /\ | |
((2 * f = e) \/ (2 * f = &3 * e + 1)) /\ | |
(f = a)`;; | |
let fms = | |
map (itlist (fun x p -> Exists(x,And(Atom(R(`>`,[Var x; Fn(`1`,[])])),p))) | |
[`b`; `c`; `d`; `e`; `f`]) | |
(disjuncts fm);; | |
let fm = el &15 fms;; | |
integer_qelim fm;; | |
******************) | |
(* ------------------------------------------------------------------------- *) | |
(* More old examples. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV | |
`?x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ &33 + z < x /\ x + &1 <= &2 * y \/ | |
&3 divides &4 * x + z /\ (x + y + z = &7 * z)`;; | |
time COOPER_CONV | |
`?x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ | |
&33 + z < x /\ | |
x + &1 <= &2 * y \/ | |
&3 divides (&4 * x + z) /\ | |
(x + y + z = &7 * z)`;; | |
time COOPER_CONV | |
`?x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ | |
&33 + z < x /\ | |
x + &1 <= &2 * y \/ | |
&3 divides (&4 * x + z) /\ | |
(x + y + z = &7 * z)`;; | |
(**** This also seems very slow; one quantifier less maybe? | |
time COOPER_CONV | |
`?z y x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ | |
&33 + z < x /\ | |
x + &1 <= &2 * y \/ | |
&3 divides (&4 * x + z) /\ | |
(x + y + z = &7 * z)`;; | |
time COOPER_CONV | |
`?y x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ | |
&33 + z < x /\ | |
x + &1 <= &2 * y \/ | |
&3 divides (&4 * x + z) /\ | |
(x + y + z = &7 * z)`;; | |
*****) | |
time COOPER_CONV | |
`?x. x + &1 < &2 * y /\ | |
&3 divides (&4 * x + z) /\ | |
(&6 * x + y + z = &7 * z)`;; | |
time COOPER_CONV | |
`?x. &5 * x + x + x < x \/ | |
(y = &7 - x) /\ | |
&33 + z < x /\ | |
x + &1 < &2 * y \/ | |
&3 divides (&4 * x + z) /\ | |
(x + y + z = &7 * z)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Stamp problem. *) | |
(* ------------------------------------------------------------------------- *) | |
time COOPER_CONV `!x. x >= &8 ==> ?u v. u >= &0 /\ v >= &0 /\ | |
(x = &3 * u + &5 * v)`;; | |
time COOPER_CONV `!x. x >= &10 ==> ?u v. u >= &0 /\ v >= &0 /\ | |
(x = &3 * u + &7 * v)`;; | |
time COOPER_CONV `!x. x >= &30 ==> ?u v. u >= &0 /\ v >= &0 /\ | |
(x = &3 * u + &7 * v)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Decision procedures in the style of INT_ARITH and ARITH_RULE. *) | |
(* *) | |
(* Really I should locate the free alien subterms. *) | |
(* ------------------------------------------------------------------------- *) | |
let INT_COOPER tm = | |
let fvs = frees tm in | |
let tm' = list_mk_forall(fvs,tm) in | |
SPECL fvs (EQT_ELIM(COOPER_CONV tm'));; | |
let COOPER_RULE tm = | |
let fvs = frees tm in | |
let tm' = list_mk_forall(fvs,tm) in | |
let th = (NUM_TO_INT_CONV THENC COOPER_CONV) tm' in | |
SPECL fvs (EQT_ELIM th);; | |
(* ------------------------------------------------------------------------- *) | |
(* Examples. *) | |
(* ------------------------------------------------------------------------- *) | |
time INT_COOPER `abs(x) < &1 ==> (x = &0)`;; | |
time COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;; | |
time COOPER_RULE `!n. EVEN(n) ==> (2 * n DIV 2 = n)`;; | |
time COOPER_RULE `!n. ODD n <=> 2 * n DIV 2 < n`;; | |
(**** This seems quite slow (maybe not very) as well | |
time COOPER_RULE `n DIV 3 <= n DIV 2`;; | |
****) | |
(*** This one too? | |
time COOPER_RULE `!x. ?y. if EVEN x then x = 2 * y else x = 2 * (y - 1) + 1`;; | |
***) | |
time COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;; | |