Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
24 kB
(* ========================================================================= *)
(* Proof that provability is definable; weak form of Godel's theorem. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Auxiliary predicate: all numbers in an iterated-pair "list". *)
(* ------------------------------------------------------------------------- *)
let ALLN_DEF =
let th = prove
(`!P. ?ALLN. !z.
ALLN z <=>
if ?x y. z = NPAIR x y
then P (@x. ?y. NPAIR x y = z) /\
ALLN (@y. ?x. NPAIR x y = z)
else T`,
GEN_TAC THEN MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
BINOP_TAC THENL [ALL_TAC; FIRST_ASSUM MATCH_MP_TAC] THEN
FIRST_ASSUM(REPEAT_TCL CHOOSE_THEN SUBST1_TAC) THEN
REWRITE_TAC[NPAIR_INJ; RIGHT_EXISTS_AND_THM; EXISTS_REFL;
SELECT_REFL; NPAIR_LT; LEFT_EXISTS_AND_THM]) in
new_specification ["ALLN"] (REWRITE_RULE[SKOLEM_THM] th);;
let ALLN = prove
(`(ALLN P 0 <=> T) /\
(ALLN P (NPAIR x y) <=> P x /\ ALLN P y)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [ALLN_DEF] THEN
REWRITE_TAC[NPAIR_NONZERO] THEN
REWRITE_TAC[NPAIR_INJ; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[EXISTS_REFL; GSYM EXISTS_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Valid term. *)
(* ------------------------------------------------------------------------- *)
let TERM1 = new_definition
`TERM1 x y <=>
(?l u. (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
(?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
(?n s t l. ((n = 3) \/ (n = 4)) /\
(x = NPAIR s (NPAIR t l)) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l))`;;
let TERM = new_definition
`TERM n <=> RTC TERM1 0 (NPAIR n 0)`;;
let isagterm = new_definition
`isagterm n <=> ?t. n = gterm t`;;
let TERM_LEMMA1 = prove
(`!x y. TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`,
REPEAT GEN_TAC THEN REWRITE_TAC[TERM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagterm] THEN
MESON_TAC[gterm; NUMBER_SURJ]);;
let TERM_LEMMA2 = prove
(`!t a. RTC TERM1 a (NPAIR (gterm t) a)`,
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[gterm] THEN
MESON_TAC[RTC_INC; RTC_TRANS; TERM1]);;
let TERM_THM = prove
(`!n. TERM n <=> ?t. n = gterm t`,
GEN_TAC THEN REWRITE_TAC[TERM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[TERM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC TERM1 x y ==> ALLN isagterm x ==> ALLN isagterm y`
(fun th -> MESON_TAC[ALLN; isagterm; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[TERM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Valid formula. *)
(* ------------------------------------------------------------------------- *)
let FORM1 = new_definition
`FORM1 x y <=>
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
(?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
TERM s /\ TERM t /\
(x = l) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
(?p l. (x = NPAIR p l) /\
(y = NPAIR (NPAIR 4 p) l)) \/
(?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
(x = NPAIR p (NPAIR q l)) /\
(y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
(?n u p l. ((n = 9) \/ (n = 10)) /\
(x = NPAIR p l) /\
(y = NPAIR (NPAIR n (NPAIR u p)) l))`;;
let FORM = new_definition
`FORM n <=> RTC FORM1 0 (NPAIR n 0)`;;
let isagform = new_definition
`isagform n <=> ?t. n = gform t`;;
let FORM_LEMMA1 = prove
(`!x y. FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FORM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN; isagform] THEN
MESON_TAC[gform; TERM_THM; NUMBER_SURJ]);;
(*** Following really blows up if we just use FORM1
*** instead of manually breaking up the conjuncts
***)
let FORM_LEMMA2 = prove
(`!p a. RTC FORM1 a (NPAIR (gform p) a)`,
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[gform] THEN
REPEAT CONJ_TAC THEN
MESON_TAC[RTC_INC; RTC_TRANS; TERM_THM;
REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`]
(snd(EQ_IMP_RULE (SPEC_ALL FORM1)))]);;
let FORM_THM = prove
(`!n. FORM n <=> ?p. n = gform p`,
GEN_TAC THEN REWRITE_TAC[FORM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FORM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC FORM1 x y ==> ALLN isagform x ==> ALLN isagform y`
(fun th -> MESON_TAC[ALLN; isagform; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FORM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Term without particular variable. *)
(* ------------------------------------------------------------------------- *)
let FREETERM1 = new_definition
`FREETERM1 m x y <=>
(?l u. ~(u = m) /\ (x = l) /\ (y = NPAIR (NPAIR 0 u) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 1 0) l)) \/
(?t l. (x = NPAIR t l) /\ (y = NPAIR (NPAIR 2 t) l)) \/
(?n s t l. ((n = 3) \/ (n = 4)) /\
(x = NPAIR s (NPAIR t l)) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l))`;;
let FREETERM = new_definition
`FREETERM m n <=> RTC (FREETERM1 m) 0 (NPAIR n 0)`;;
let isafterm = new_definition
`isafterm m n <=> ?t. ~(m IN IMAGE number (FVT t)) /\ (n = gterm t)`;;
let ISAFTERM = prove
(`(~(number x = m) ==> isafterm m (NPAIR 0 (number x))) /\
isafterm m (NPAIR 1 0) /\
(isafterm m t ==> isafterm m (NPAIR 2 t)) /\
(isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 3 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafterm m (NPAIR 4 (NPAIR s t)))`,
REWRITE_TAC[isafterm; gterm] THEN REPEAT CONJ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC `V x`;
EXISTS_TAC `Z`;
DISCH_THEN(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `Suc t`;
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `s ++ t`;
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `s ** t`] THEN
ASM_REWRITE_TAC[gterm; FVT; IMAGE_UNION; NOT_IN_EMPTY; IN_SING; IN_UNION;
IMAGE_CLAUSES]);;
let FREETERM_LEMMA1 = prove
(`!m x y. FREETERM1 m x y ==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
MESON_TAC[ISAFTERM; NUMBER_SURJ]);;
let FREETERM_LEMMA2 = prove
(`!m t a. ~(m IN IMAGE number (FVT t))
==> RTC (FREETERM1 m) a (NPAIR (gterm t) a)`,
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[gterm; FVT; NOT_IN_EMPTY; IN_SING; IN_UNION;
IMAGE_CLAUSES; IMAGE_UNION] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REPEAT CONJ_TAC THEN
TRY(REPEAT GEN_TAC THEN DISCH_THEN
(fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
ASM_REWRITE_TAC[] THEN
MESON_TAC[RTC_INC; RTC_TRANS; FREETERM1]);;
let FREETERM_THM = prove
(`!m n. FREETERM m n <=> ?t. ~(m IN IMAGE number (FVT(t))) /\ (n = gterm t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREETERM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FREETERM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC (FREETERM1 m) x y
==> ALLN (isafterm m) x ==> ALLN (isafterm m) y`
(fun th -> MESON_TAC[ALLN; isagterm; isafterm; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREETERM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Formula without particular free variable. *)
(* ------------------------------------------------------------------------- *)
let FREEFORM1 = new_definition
`FREEFORM1 m x y <=>
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 0) l)) \/
(?l. (x = l) /\ (y = NPAIR (NPAIR 0 1) l)) \/
(?n s t l. ((n = 1) \/ (n = 2) \/ (n = 3)) /\
FREETERM m s /\ FREETERM m t /\
(x = l) /\
(y = NPAIR (NPAIR n (NPAIR s t)) l)) \/
(?p l. (x = NPAIR p l) /\
(y = NPAIR (NPAIR 4 p) l)) \/
(?n p q l. ((n = 5) \/ (n = 6) \/ (n = 7) \/ (n = 8)) /\
(x = NPAIR p (NPAIR q l)) /\
(y = NPAIR (NPAIR n (NPAIR p q)) l)) \/
(?n u p l. ((n = 9) \/ (n = 10)) /\
(x = NPAIR p l) /\
(y = NPAIR (NPAIR n (NPAIR u p)) l)) \/
(?n p l. ((n = 9) \/ (n = 10)) /\
(x = l) /\ FORM p /\
(y = NPAIR (NPAIR n (NPAIR m p)) l))`;;
let FREEFORM = new_definition
`FREEFORM m n <=> RTC (FREEFORM1 m) 0 (NPAIR n 0)`;;
let isafform = new_definition
`isafform m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`;;
let ISAFFORM = prove
(`isafform m (NPAIR 0 0) /\
isafform m (NPAIR 0 1) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 1 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 2 (NPAIR s t))) /\
(isafterm m s /\ isafterm m t ==> isafform m (NPAIR 3 (NPAIR s t))) /\
(isafform m p ==> isafform m (NPAIR 4 p)) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 5 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 6 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 7 (NPAIR p q))) /\
(isafform m p /\ isafform m q ==> isafform m (NPAIR 8 (NPAIR p q))) /\
(isafform m p ==> isafform m (NPAIR 9 (NPAIR x p))) /\
(isafform m p ==> isafform m (NPAIR 10 (NPAIR x p))) /\
(isagform p ==> isafform m (NPAIR 9 (NPAIR m p))) /\
(isagform p ==> isafform m (NPAIR 10 (NPAIR m p)))`,
let tac0 = DISCH_THEN(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
and tac1 =
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC))
and tac2 =
DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `p:form` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC)) in
REWRITE_TAC[isafform; gform; isagform; isafterm] THEN REPEAT CONJ_TAC THENL
[EXISTS_TAC `False`;
EXISTS_TAC `True`;
tac1 THEN EXISTS_TAC `s === t`;
tac1 THEN EXISTS_TAC `s << t`;
tac1 THEN EXISTS_TAC `s <<= t`;
tac0 THEN EXISTS_TAC `Not p`;
tac2 THEN EXISTS_TAC `p && q`;
tac2 THEN EXISTS_TAC `p || q`;
tac2 THEN EXISTS_TAC `p --> q`;
tac2 THEN EXISTS_TAC `p <-> q`;
tac0 THEN EXISTS_TAC `!!(denumber x) p`;
tac0 THEN EXISTS_TAC `??(denumber x) p`;
tac0 THEN EXISTS_TAC `!!(denumber m) p`;
tac0 THEN EXISTS_TAC `??(denumber m) p`] THEN
ASM_REWRITE_TAC[FV; IN_DELETE; NOT_IN_EMPTY; IN_SING; IN_UNION; gform;
NUMBER_DENUMBER; IMAGE_CLAUSES; IMAGE_UNION] THEN
ASM SET_TAC[NUMBER_DENUMBER]);;
let FREEFORM_LEMMA1 = prove
(`!x y. FREEFORM1 m x y ==> ALLN (isafform m) x ==> ALLN (isafform m) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
REWRITE_TAC[FREETERM_THM; GSYM isafterm] THEN
REWRITE_TAC[FORM_THM; GSYM isagform] THEN MESON_TAC[ISAFFORM]);;
let FREEFORM_LEMMA2 = prove
(`!m p a. ~(m IN IMAGE number (FV p))
==> RTC (FREEFORM1 m) a (NPAIR (gform p) a)`,
let lemma = prove
(`m IN IMAGE number (s DELETE k) <=>
m IN IMAGE number s /\ ~(m = number k)`,
SET_TAC[NUMBER_INJ]) in
GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[gform; FV; NOT_IN_EMPTY; IN_DELETE; IN_SING; IN_UNION;
lemma; IMAGE_UNION; IMAGE_CLAUSES] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REPEAT CONJ_TAC THEN
TRY(REPEAT GEN_TAC THEN DISCH_THEN
(fun th -> GEN_TAC THEN STRIP_TAC THEN MP_TAC th)) THEN
ASM_REWRITE_TAC[] THEN
MESON_TAC[RTC_INC; RTC_TRANS; FORM_THM;
REWRITE_RULE[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`;
FREETERM_THM]
(snd(EQ_IMP_RULE (SPEC_ALL FREEFORM1)))]);;
let FREEFORM_THM = prove
(`!m n. FREEFORM m n <=> ?p. ~(m IN IMAGE number (FV p)) /\ (n = gform p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FREEFORM] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[FREEFORM_LEMMA2]] THEN
SUBGOAL_THEN `!x y. RTC (FREEFORM1 m) x y
==> ALLN (isafform m) x ==> ALLN (isafform m) y`
(fun th -> MESON_TAC[ALLN; isagform; isafform; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[FREEFORM_LEMMA1] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetization of logical axioms --- autogenerated. *)
(* ------------------------------------------------------------------------- *)
let AXIOM,AXIOM_THM =
let th0 = prove
(`((?x p. P (number x) (gform p) /\ ~(x IN FV(p))) <=>
(?x p. FREEFORM x p /\ P x p)) /\
((?x t. P (number x) (gterm t) /\ ~(x IN FVT(t))) <=>
(?x t. FREETERM x t /\ P x t))`,
REWRITE_TAC[FREETERM_THM; FREEFORM_THM] THEN CONJ_TAC THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN
GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN
REWRITE_TAC[UNWIND_THM2; IN_IMAGE] THEN
ASM_MESON_TAC[IN_IMAGE; NUMBER_DENUMBER])
and th1 = prove
(`((?p. P(gform p)) <=> (?p. FORM(p) /\ P p)) /\
((?t. P(gterm t)) <=> (?t. TERM(t) /\ P t))`,
MESON_TAC[FORM_THM; TERM_THM])
and th2 = prove
(`(?x. P(number x)) <=> (?x. P x)`,
MESON_TAC[NUMBER_DENUMBER]) in
let th = (REWRITE_CONV[GSYM GFORM_INJ] THENC
REWRITE_CONV[gform; gterm] THENC
REWRITE_CONV[th0] THENC REWRITE_CONV[th1] THENC
REWRITE_CONV[th2] THENC
REWRITE_CONV[RIGHT_AND_EXISTS_THM])
(rhs(concl(SPEC `a:form` axiom_CASES))) in
let dtm = mk_eq(`(AXIOM:num->bool) a`,
subst [`a:num`,`gform a`] (rhs(concl th))) in
let AXIOM = new_definition dtm in
let AXIOM_THM = prove
(`!p. AXIOM(gform p) <=> axiom p`,
REWRITE_TAC[axiom_CASES; AXIOM; th]) in
AXIOM,AXIOM_THM;;
(* ------------------------------------------------------------------------- *)
(* Prove also that all AXIOMs are in fact numbers of formulas. *)
(* ------------------------------------------------------------------------- *)
let GTERM_CASES_ALT = prove
(`(gterm u = NPAIR 0 x <=> u = V(denumber x))`,
REWRITE_TAC[GSYM GTERM_CASES; NUMBER_DENUMBER]);;
let GFORM_CASES_ALT = prove
(`(gform r = NPAIR 9 (NPAIR x n) <=>
(?p. r = !!(denumber x) p /\ gform p = n)) /\
(gform r = NPAIR 10 (NPAIR x n) <=>
(?p. r = ??(denumber x) p /\ gform p = n))`,
REWRITE_TAC[GSYM GFORM_CASES; NUMBER_DENUMBER]);;
let AXIOM_FORMULA = prove
(`!a. AXIOM a ==> ?p. a = gform p`,
REWRITE_TAC[AXIOM; FREEFORM_THM; FREETERM_THM; FORM_THM; TERM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC(BINDER_CONV SYM_CONV) THEN
REWRITE_TAC[GFORM_CASES; GTERM_CASES;
GTERM_CASES_ALT; GFORM_CASES_ALT] THEN
MESON_TAC[NUMBER_DENUMBER]);;
let AXIOM_THM_STRONG = prove
(`!a. AXIOM a <=> ?p. axiom p /\ (a = gform p)`,
MESON_TAC[AXIOM_THM; AXIOM_FORMULA]);;
(* ------------------------------------------------------------------------- *)
(* Arithmetization of the full logical inference rules. *)
(* ------------------------------------------------------------------------- *)
let PROV1 = new_definition
`PROV1 A x y <=>
(?a. (AXIOM a \/ a IN A) /\ (y = NPAIR a x)) \/
(?p q l. (x = NPAIR (NPAIR 7 (NPAIR p q)) (NPAIR p l)) /\
(y = NPAIR q l)) \/
(?p u l. (x = NPAIR p l) /\ (y = NPAIR (NPAIR 9 (NPAIR u p)) l))`;;
let PROV = new_definition
`PROV A n <=> RTC (PROV1 A) 0 (NPAIR n 0)`;;
let isaprove = new_definition
`isaprove A n <=> ?p. (gform p = n) /\ A |-- p`;;
let PROV_LEMMA1 = prove
(`!A p q. PROV1 (IMAGE gform A) x y
==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`,
REPEAT GEN_TAC THEN REWRITE_TAC[PROV1] THEN
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; ALLN] THEN
REWRITE_TAC[isaprove] THEN REPEAT CONJ_TAC THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[AXIOM_THM_STRONG; proves_RULES];
ASM_MESON_TAC[IN_IMAGE; GFORM_INJ; proves_RULES; gform];
ALL_TAC;
ASM_MESON_TAC[NUMBER_DENUMBER;
IN_IMAGE; GFORM_INJ; proves_RULES; gform]] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[gform; NPAIR_INJ; ARITH_EQ] THEN
MAP_EVERY X_GEN_TAC [`P:form`; `Q:form`] THEN
DISCH_THEN(K ALL_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o GSYM) MP_TAC) THEN
ASM_REWRITE_TAC[GFORM_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN
ASM_MESON_TAC[proves_RULES]);;
let PROV_LEMMA2 = prove
(`!A p. A |-- p ==> !a. RTC (PROV1 (IMAGE gform A)) a (NPAIR (gform p) a)`,
GEN_TAC THEN MATCH_MP_TAC proves_INDUCT THEN REWRITE_TAC[gform] THEN
MESON_TAC[RTC_INC; RTC_TRANS; PROV1; IN_IMAGE; AXIOM_THM]);;
let PROV_THM_STRONG = prove
(`!A n. PROV (IMAGE gform A) n <=> ?p. A |-- p /\ (gform p = n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[PROV] THEN EQ_TAC THENL
[ALL_TAC; MESON_TAC[PROV_LEMMA2]] THEN
SUBGOAL_THEN
`!x y. RTC (PROV1 (IMAGE gform A)) x y
==> ALLN (isaprove A) x ==> ALLN (isaprove A) y`
(fun th -> MESON_TAC[ALLN; isaprove; GFORM_INJ; th]) THEN
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[PROV_LEMMA1] THEN MESON_TAC[]);;
let PROV_THM = prove
(`!A p. PROV (IMAGE gform A) (gform p) <=> A |-- p`,
MESON_TAC[PROV_THM_STRONG; GFORM_INJ]);;
(* ------------------------------------------------------------------------- *)
(* Now really objectify all that. *)
(* ------------------------------------------------------------------------- *)
let arith_term1,ARITH_TERM1 = OBJECTIFY [] "arith_term1" TERM1;;
let FV_TERM1 = prove
(`!s t. FV(arith_term1 s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_term1; FVT_PAIR; FVT_NUMERAL]);;
let arith_term,ARITH_TERM = OBJECTIFY_RTC ARITH_TERM1 "arith_term" TERM;;
let FV_TERM = prove
(`!t. FV(arith_term t) = FVT t`,
FV_TAC[arith_term; FV_RTC; FV_TERM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_form1,ARITH_FORM1 =
OBJECTIFY [ARITH_TERM] "arith_form1" FORM1;;
let FV_FORM1 = prove
(`!s t. FV(arith_form1 s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_form1; FV_TERM; FVT_PAIR; FVT_NUMERAL]);;
let arith_form,ARITH_FORM = OBJECTIFY_RTC ARITH_FORM1 "arith_form" FORM;;
let FV_FORM = prove
(`!t. FV(arith_form t) = FVT t`,
FV_TAC[arith_form; FV_RTC; FV_FORM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeterm1,ARITH_FREETERM1 =
OBJECTIFY [] "arith_freeterm1" FREETERM1;;
let FV_FREETERM1 = prove
(`!s t u. FV(arith_freeterm1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
FV_TAC[arith_freeterm1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeterm,ARITH_FREETERM =
OBJECTIFY_RTCP ARITH_FREETERM1 "arith_freeterm" FREETERM;;
let FV_FREETERM = prove
(`!s t. FV(arith_freeterm s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_freeterm; FV_RTCP; FV_FREETERM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeform1,ARITH_FREEFORM1 =
OBJECTIFY [ARITH_FREETERM; ARITH_FORM] "arith_freeform1" FREEFORM1;;
let FV_FREEFORM1 = prove
(`!s t u. FV(arith_freeform1 s t u) = (FVT s) UNION (FVT t) UNION (FVT u)`,
FV_TAC[arith_freeform1; FV_FREETERM; FV_FORM; FVT_PAIR; FVT_NUMERAL]);;
let arith_freeform,ARITH_FREEFORM =
OBJECTIFY_RTCP ARITH_FREEFORM1 "arith_freeform" FREEFORM;;
let FV_FREEFORM = prove
(`!s t. FV(arith_freeform s t) = (FVT s) UNION (FVT t)`,
FV_TAC[arith_freeform; FV_RTCP; FV_FREEFORM1; FVT_PAIR; FVT_NUMERAL]);;
let arith_axiom,ARITH_AXIOM =
OBJECTIFY [ARITH_FORM; ARITH_FREEFORM; ARITH_FREETERM; ARITH_TERM]
"arith_axiom" AXIOM;;
let FV_AXIOM = prove
(`!t. FV(arith_axiom t) = FVT t`,
FV_TAC[arith_axiom; FV_FREETERM; FV_FREEFORM; FV_TERM; FV_FORM;
FVT_PAIR; FVT_NUMERAL]);;
(* ------------------------------------------------------------------------- *)
(* Parametrization by A means it's easier to do these cases manually. *)
(* ------------------------------------------------------------------------- *)
let arith_prov1,ARITH_PROV1 =
let PROV1' = REWRITE_RULE[IN] PROV1 in
OBJECTIFY [ASSUME `!v n. holds v (A n) <=> Ax (termval v n)`; ARITH_AXIOM]
"arith_prov1" PROV1';;
let ARITH_PROV1 = prove
(`(!v t. holds v (A t) <=> Ax(termval v t))
==> (!v s t.
holds v (arith_prov1 A s t) <=>
PROV1 Ax (termval v s) (termval v t))`,
REWRITE_TAC[arith_prov1; holds; HOLDS_FORMSUBST] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[termval; valmod; o_THM; ARITH_EQ; ARITH_PAIR;
TERMVAL_NUMERAL; ARITH_AXIOM] THEN
REWRITE_TAC[PROV1; IN]);;
let FV_PROV1 = prove
(`(!t. FV(A t) = FVT t) ==> !s t. FV(arith_prov1 A s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_prov1; FV_AXIOM; FVT_NUMERAL; FVT_PAIR]);;
let arith_prov = new_definition
`arith_prov A n =
formsubst ((0 |-> n) V)
(arith_rtc (arith_prov1 A) (numeral 0)
(arith_pair (V 0) (numeral 0)))`;;
let ARITH_PROV = prove
(`!Ax A. (!v t. holds v (A t) <=> Ax(termval v t))
==> !v n. holds v (arith_prov A n) <=> PROV Ax (termval v n)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ARITH_PROV1) THEN
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN DISCH_TAC THEN
ASM_REWRITE_TAC[arith_prov; HOLDS_FORMSUBST] THEN
REWRITE_TAC[termval; valmod; o_DEF; TERMVAL_NUMERAL; ARITH_PAIR] THEN
REWRITE_TAC[PROV]);;
let FV_PROV = prove
(`(!t. FV(A t) = FVT t) ==> !t. FV(arith_prov A t) = FVT t`,
FV_TAC[arith_prov; FV_PROV1; FV_RTC; FVT_NUMERAL; FVT_PAIR]);;
(* ------------------------------------------------------------------------- *)
(* Our final conclusion. *)
(* ------------------------------------------------------------------------- *)
let PROV_DEFINABLE = prove
(`!Ax. definable {gform p | p IN Ax} ==> definable {gform p | Ax |-- p}`,
GEN_TAC THEN REWRITE_TAC[definable; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `A:form` (X_CHOOSE_TAC `x:num`)) THEN
MP_TAC(SPECL [`IMAGE gform Ax`; `\t. formsubst ((x |-> t) V) A`]
ARITH_PROV) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
REWRITE_TAC[o_THM; VALMOD_BASIC; IMAGE; IN_ELIM_THM];
ALL_TAC] THEN
REWRITE_TAC[PROV_THM_STRONG] THEN DISCH_TAC THEN
EXISTS_TAC `arith_prov (\t. formsubst ((x |-> t) V) A) (V x)` THEN
ASM_REWRITE_TAC[termval] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The crudest conclusion: truth undefinable, provability not, so: *)
(* ------------------------------------------------------------------------- *)
let GODEL_CRUDE = prove
(`!Ax. definable {gform p | p IN Ax} ==> ?p. ~(true p <=> Ax |-- p)`,
REPEAT STRIP_TAC THEN MP_TAC TARSKI_THEOREM THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PROV_DEFINABLE) THEN
MATCH_MP_TAC(TAUT `(~c ==> (a <=> b)) ==> a ==> ~b ==> c`) THEN
SIMP_TAC[NOT_EXISTS_THM]);;