Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin, Kenny Lau | |
-/ | |
import algebra.geom_sum | |
import ring_theory.ideal.quotient | |
/-! | |
# Basic results in number theory | |
This file should contain basic results in number theory. So far, it only contains the essential | |
lemma in the construction of the ring of Witt vectors. | |
## Main statement | |
`dvd_sub_pow_of_dvd_sub` proves that for elements `a` and `b` in a commutative ring `R` and for | |
all natural numbers `p` and `k` if `p` divides `a-b` in `R`, then `p ^ (k + 1)` divides | |
`a ^ (p ^ k) - b ^ (p ^ k)`. | |
-/ | |
section | |
open ideal ideal.quotient | |
lemma dvd_sub_pow_of_dvd_sub {R : Type*} [comm_ring R] {p : ℕ} | |
{a b : R} (h : (p : R) ∣ a - b) (k : ℕ) : | |
(p^(k+1) : R) ∣ a^(p^k) - b^(p^k) := | |
begin | |
induction k with k ih, | |
{ rwa [pow_one, pow_zero, pow_one, pow_one] }, | |
rw [pow_succ' p k, pow_mul, pow_mul, ← geom_sum₂_mul, pow_succ], | |
refine mul_dvd_mul _ ih, | |
let I : ideal R := span {p}, | |
let f : R →+* R ⧸ I := mk I, | |
have hp : (p : R ⧸ I) = 0, | |
{ rw [← map_nat_cast f, eq_zero_iff_mem, mem_span_singleton] }, | |
rw [← mem_span_singleton, ← ideal.quotient.eq] at h, | |
rw [← mem_span_singleton, ← eq_zero_iff_mem, ring_hom.map_geom_sum₂, | |
ring_hom.map_pow, ring_hom.map_pow, h, geom_sum₂_self, hp, zero_mul], | |
end | |
end | |