Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.41 kB
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Kenny Lau
-/
import algebra.geom_sum
import ring_theory.ideal.quotient
/-!
# Basic results in number theory
This file should contain basic results in number theory. So far, it only contains the essential
lemma in the construction of the ring of Witt vectors.
## Main statement
`dvd_sub_pow_of_dvd_sub` proves that for elements `a` and `b` in a commutative ring `R` and for
all natural numbers `p` and `k` if `p` divides `a-b` in `R`, then `p ^ (k + 1)` divides
`a ^ (p ^ k) - b ^ (p ^ k)`.
-/
section
open ideal ideal.quotient
lemma dvd_sub_pow_of_dvd_sub {R : Type*} [comm_ring R] {p : ℕ}
{a b : R} (h : (p : R) ∣ a - b) (k : ℕ) :
(p^(k+1) : R) ∣ a^(p^k) - b^(p^k) :=
begin
induction k with k ih,
{ rwa [pow_one, pow_zero, pow_one, pow_one] },
rw [pow_succ' p k, pow_mul, pow_mul, ← geom_sum₂_mul, pow_succ],
refine mul_dvd_mul _ ih,
let I : ideal R := span {p},
let f : R →+* R ⧸ I := mk I,
have hp : (p : R ⧸ I) = 0,
{ rw [← map_nat_cast f, eq_zero_iff_mem, mem_span_singleton] },
rw [← mem_span_singleton, ← ideal.quotient.eq] at h,
rw [← mem_span_singleton, ← eq_zero_iff_mem, ring_hom.map_geom_sum₂,
ring_hom.map_pow, ring_hom.map_pow, h, geom_sum₂_self, hp, zero_mul],
end
end