/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Kenny Lau -/ import algebra.geom_sum import ring_theory.ideal.quotient /-! # Basic results in number theory This file should contain basic results in number theory. So far, it only contains the essential lemma in the construction of the ring of Witt vectors. ## Main statement `dvd_sub_pow_of_dvd_sub` proves that for elements `a` and `b` in a commutative ring `R` and for all natural numbers `p` and `k` if `p` divides `a-b` in `R`, then `p ^ (k + 1)` divides `a ^ (p ^ k) - b ^ (p ^ k)`. -/ section open ideal ideal.quotient lemma dvd_sub_pow_of_dvd_sub {R : Type*} [comm_ring R] {p : ℕ} {a b : R} (h : (p : R) ∣ a - b) (k : ℕ) : (p^(k+1) : R) ∣ a^(p^k) - b^(p^k) := begin induction k with k ih, { rwa [pow_one, pow_zero, pow_one, pow_one] }, rw [pow_succ' p k, pow_mul, pow_mul, ← geom_sum₂_mul, pow_succ], refine mul_dvd_mul _ ih, let I : ideal R := span {p}, let f : R →+* R ⧸ I := mk I, have hp : (p : R ⧸ I) = 0, { rw [← map_nat_cast f, eq_zero_iff_mem, mem_span_singleton] }, rw [← mem_span_singleton, ← ideal.quotient.eq] at h, rw [← mem_span_singleton, ← eq_zero_iff_mem, ring_hom.map_geom_sum₂, ring_hom.map_pow, ring_hom.map_pow, h, geom_sum₂_self, hp, zero_mul], end end