Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import computability.encoding | |
import model_theory.syntax | |
import set_theory.cardinal.ordinal | |
/-! # Encodings and Cardinality of First-Order Syntax | |
## Main Definitions | |
* `first_order.language.term.encoding` encodes terms as lists. | |
* `first_order.language.bounded_formula.encoding` encodes bounded formulas as lists. | |
## Main Results | |
* `first_order.language.term.card_le` shows that the number of terms in `L.term α` is at most | |
`max ℵ₀ # (α ⊕ Σ i, L.functions i)`. | |
* `first_order.language.bounded_formula.card_le` shows that the number of bounded formulas in | |
`Σ n, L.bounded_formula α n` is at most | |
`max ℵ₀ (cardinal.lift.{max u v} (#α) + cardinal.lift.{u'} L.card)`. | |
## TODO | |
* `primcodable` instances for terms and formulas, based on the `encoding`s | |
* Computability facts about term and formula operations, to set up a computability approach to | |
incompleteness | |
-/ | |
universes u v w u' v' | |
namespace first_order | |
namespace language | |
variables {L : language.{u v}} | |
variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P] | |
variables {α : Type u'} {β : Type v'} | |
open_locale first_order cardinal | |
open computability list Structure cardinal fin | |
namespace term | |
/-- Encodes a term as a list of variables and function symbols. -/ | |
def list_encode : L.term α → list (α ⊕ Σ i, L.functions i) | |
| (var i) := [sum.inl i] | |
| (func f ts) := ((sum.inr (⟨_, f⟩ : Σ i, L.functions i)) :: | |
((list.fin_range _).bind (λ i, (ts i).list_encode))) | |
/-- Decodes a list of variables and function symbols as a list of terms. -/ | |
def list_decode : | |
list (α ⊕ Σ i, L.functions i) → list (option (L.term α)) | |
| [] := [] | |
| ((sum.inl a) :: l) := some (var a) :: list_decode l | |
| ((sum.inr ⟨n, f⟩) :: l) := | |
if h : ∀ (i : fin n), ((list_decode l).nth i).join.is_some | |
then func f (λ i, option.get (h i)) :: ((list_decode l).drop n) | |
else [none] | |
theorem list_decode_encode_list (l : list (L.term α)) : | |
list_decode (l.bind list_encode) = l.map option.some := | |
begin | |
suffices h : ∀ (t : L.term α) (l : list (α ⊕ Σ i, L.functions i)), | |
list_decode (t.list_encode ++ l) = some t :: list_decode l, | |
{ induction l with t l lih, | |
{ refl }, | |
{ rw [cons_bind, h t (l.bind list_encode), lih, list.map] } }, | |
{ intro t, | |
induction t with a n f ts ih; intro l, | |
{ rw [list_encode, singleton_append, list_decode] }, | |
{ rw [list_encode, cons_append, list_decode], | |
have h : list_decode ((fin_range n).bind (λ (i : fin n), (ts i).list_encode) ++ l) = | |
(fin_range n).map (option.some ∘ ts) ++ list_decode l, | |
{ induction (fin_range n) with i l' l'ih, | |
{ refl }, | |
{ rw [cons_bind, append_assoc, ih, map_cons, l'ih, cons_append] } }, | |
have h' : ∀ i, (list_decode ((fin_range n).bind (λ (i : fin n), (ts i).list_encode) ++ l)).nth | |
↑i = some (some (ts i)), | |
{ intro i, | |
rw [h, nth_append, nth_map], | |
{ simp only [option.map_eq_some', function.comp_app, nth_eq_some], | |
refine ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_fin_range _)), _⟩, rfl⟩, | |
rw [nth_le_fin_range, fin.eta] }, | |
{ refine lt_of_lt_of_le i.2 _, | |
simp } }, | |
refine (dif_pos (λ i, option.is_some_iff_exists.2 ⟨ts i, _⟩)).trans _, | |
{ rw [option.join_eq_some, h'] }, | |
refine congr (congr rfl (congr rfl (congr rfl (funext (λ i, option.get_of_mem _ _))))) _, | |
{ simp [h'] }, | |
{ rw [h, drop_left'], | |
rw [length_map, length_fin_range] } } } | |
end | |
/-- An encoding of terms as lists. -/ | |
{ Γ := α ⊕ Σ i, L.functions i, | |
encode := list_encode, | |
decode := λ l, (list_decode l).head'.join, | |
decode_encode := λ t, begin | |
have h := list_decode_encode_list [t], | |
rw [bind_singleton] at h, | |
simp only [h, option.join, head', list.map, option.some_bind, id.def], | |
end } | |
lemma list_encode_injective : | |
function.injective (list_encode : L.term α → list (α ⊕ Σ i, L.functions i)) := | |
term.encoding.encode_injective | |
theorem card_le : # (L.term α) ≤ max ℵ₀ (# (α ⊕ Σ i, L.functions i)) := | |
lift_le.1 (trans term.encoding.card_le_card_list (lift_le.2 (mk_list_le_max _))) | |
theorem card_sigma : # (Σ n, (L.term (α ⊕ fin n))) = max ℵ₀ (# (α ⊕ Σ i, L.functions i)) := | |
begin | |
refine le_antisymm _ _, | |
{ rw mk_sigma, | |
refine (sum_le_supr_lift _).trans _, | |
rw [mk_nat, lift_aleph_0, mul_eq_max_of_aleph_0_le_left le_rfl, max_le_iff, | |
csupr_le_iff' (bdd_above_range _)], | |
{ refine ⟨le_max_left _ _, λ i, card_le.trans _⟩, | |
rw max_le_iff, | |
refine ⟨le_max_left _ _, _⟩, | |
rw [← add_eq_max le_rfl, mk_sum, mk_sum, mk_sum, add_comm (cardinal.lift (#α)), lift_add, | |
add_assoc, lift_lift, lift_lift], | |
refine add_le_add_right _ _, | |
rw [lift_le_aleph_0, ← encodable_iff], | |
exact ⟨infer_instance⟩ }, | |
{ rw [← one_le_iff_ne_zero], | |
refine trans _ (le_csupr (bdd_above_range _) 1), | |
rw [one_le_iff_ne_zero, mk_ne_zero_iff], | |
exact ⟨var (sum.inr 0)⟩ } }, | |
{ rw [max_le_iff, ← infinite_iff], | |
refine ⟨infinite.of_injective (λ i, ⟨i + 1, var (sum.inr i)⟩) (λ i j ij, _), _⟩, | |
{ cases ij, | |
refl }, | |
{ rw [cardinal.le_def], | |
refine ⟨⟨sum.elim (λ i, ⟨0, var (sum.inl i)⟩) | |
(λ F, ⟨1, func F.2 (λ _, var (sum.inr 0))⟩), _⟩⟩, | |
{ rintros (a | a) (b | b) h, | |
{ simp only [sum.elim_inl, eq_self_iff_true, heq_iff_eq, true_and] at h, | |
rw h }, | |
{ simp only [sum.elim_inl, sum.elim_inr, nat.zero_ne_one, false_and] at h, | |
exact h.elim }, | |
{ simp only [sum.elim_inr, sum.elim_inl, nat.one_ne_zero, false_and] at h, | |
exact h.elim }, | |
{ simp only [sum.elim_inr, eq_self_iff_true, heq_iff_eq, true_and] at h, | |
rw sigma.ext_iff.2 ⟨h.1, h.2.1⟩, } } } } | |
end | |
instance [encodable α] [encodable ((Σ i, L.functions i))] : | |
encodable (L.term α) := | |
encodable.of_left_injection list_encode (λ l, (list_decode l).head'.join) | |
(λ t, begin | |
rw [← bind_singleton list_encode, list_decode_encode_list], | |
simp only [option.join, head', list.map, option.some_bind, id.def], | |
end) | |
lemma card_le_aleph_0 [h1 : nonempty (encodable α)] [h2 : L.countable_functions] : | |
# (L.term α) ≤ ℵ₀ := | |
begin | |
refine (card_le.trans _), | |
rw [max_le_iff], | |
simp only [le_refl, mk_sum, add_le_aleph_0, lift_le_aleph_0, true_and], | |
exact ⟨encodable_iff.1 h1, L.card_functions_le_aleph_0⟩, | |
end | |
instance small [small.{u} α] : | |
small.{u} (L.term α) := | |
small_of_injective list_encode_injective | |
end term | |
namespace bounded_formula | |
/-- Encodes a bounded formula as a list of symbols. -/ | |
def list_encode : ∀ {n : ℕ}, L.bounded_formula α n → | |
list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ) | |
| n falsum := [sum.inr (sum.inr (n + 2))] | |
| n (equal t₁ t₂) := [sum.inl ⟨_, t₁⟩, sum.inl ⟨_, t₂⟩] | |
| n (rel R ts) := [sum.inr (sum.inl ⟨_, R⟩), sum.inr (sum.inr n)] ++ | |
((list.fin_range _).map (λ i, sum.inl ⟨n, (ts i)⟩)) | |
| n (imp φ₁ φ₂) := (sum.inr (sum.inr 0)) :: φ₁.list_encode ++ φ₂.list_encode | |
| n (all φ) := (sum.inr (sum.inr 1)) :: φ.list_encode | |
/-- Applies the `forall` quantifier to an element of `(Σ n, L.bounded_formula α n)`, | |
or returns `default` if not possible. -/ | |
def sigma_all : (Σ n, L.bounded_formula α n) → Σ n, L.bounded_formula α n | |
| ⟨(n + 1), φ⟩ := ⟨n, φ.all⟩ | |
| _ := default | |
/-- Applies `imp` to two elements of `(Σ n, L.bounded_formula α n)`, | |
or returns `default` if not possible. -/ | |
def sigma_imp : | |
(Σ n, L.bounded_formula α n) → (Σ n, L.bounded_formula α n) → (Σ n, L.bounded_formula α n) | |
| ⟨m, φ⟩ ⟨n, ψ⟩ := if h : m = n then ⟨m, φ.imp (eq.mp (by rw h) ψ)⟩ else default | |
/-- Decodes a list of symbols as a list of formulas. -/ | |
@[simp] def list_decode : | |
Π (l : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ)), | |
(Σ n, L.bounded_formula α n) × | |
{ l' : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ) | |
// l'.sizeof ≤ max 1 l.sizeof } | |
| ((sum.inr (sum.inr (n + 2))) :: l) := ⟨⟨n, falsum⟩, l, le_max_of_le_right le_add_self⟩ | |
| ((sum.inl ⟨n₁, t₁⟩) :: sum.inl ⟨n₂, t₂⟩ :: l) := | |
⟨if h : n₁ = n₂ then ⟨n₁, equal t₁ (eq.mp (by rw h) t₂)⟩ else default, l, begin | |
simp only [list.sizeof, ← add_assoc], | |
exact le_max_of_le_right le_add_self, | |
end⟩ | |
| (sum.inr (sum.inl ⟨n, R⟩) :: (sum.inr (sum.inr k)) :: l) := ⟨ | |
if h : ∀ (i : fin n), ((l.map sum.get_left).nth i).join.is_some | |
then if h' : ∀ i, (option.get (h i)).1 = k | |
then ⟨k, bounded_formula.rel R (λ i, eq.mp (by rw h' i) (option.get (h i)).2)⟩ | |
else default | |
else default, | |
l.drop n, le_max_of_le_right (le_add_left (le_add_left (list.drop_sizeof_le _ _)))⟩ | |
| ((sum.inr (sum.inr 0)) :: l) := | |
have (↑((list_decode l).2) : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ)).sizeof | |
< 1 + (1 + 1) + l.sizeof, from begin | |
refine lt_of_le_of_lt (list_decode l).2.2 (max_lt _ (nat.lt_add_of_pos_left dec_trivial)), | |
rw [add_assoc, add_comm, nat.lt_succ_iff, add_assoc], | |
exact le_self_add, | |
end, | |
⟨sigma_imp (list_decode l).1 (list_decode (list_decode l).2).1, | |
(list_decode (list_decode l).2).2, le_max_of_le_right (trans (list_decode _).2.2 (max_le | |
(le_add_right le_self_add) (trans (list_decode _).2.2 | |
(max_le (le_add_right le_self_add) le_add_self))))⟩ | |
| ((sum.inr (sum.inr 1)) :: l) := ⟨sigma_all (list_decode l).1, (list_decode l).2, | |
(list_decode l).2.2.trans (max_le_max le_rfl le_add_self)⟩ | |
| _ := ⟨default, [], le_max_left _ _⟩ | |
@[simp] theorem list_decode_encode_list (l : list (Σ n, L.bounded_formula α n)) : | |
(list_decode (l.bind (λ φ, φ.2.list_encode))).1 = l.head := | |
begin | |
suffices h : ∀ (φ : (Σ n, L.bounded_formula α n)) l, | |
(list_decode (list_encode φ.2 ++ l)).1 = φ ∧ (list_decode (list_encode φ.2 ++ l)).2.1 = l, | |
{ induction l with φ l lih, | |
{ rw [list.nil_bind], | |
simp [list_decode], }, | |
{ rw [cons_bind, (h φ _).1, head_cons] } }, | |
{ rintro ⟨n, φ⟩, | |
induction φ with _ _ _ _ _ _ _ ts _ _ _ ih1 ih2 _ _ ih; intro l, | |
{ rw [list_encode, singleton_append, list_decode], | |
simp only [eq_self_iff_true, heq_iff_eq, and_self], }, | |
{ rw [list_encode, cons_append, cons_append, list_decode, dif_pos], | |
{ simp only [eq_mp_eq_cast, cast_eq, eq_self_iff_true, heq_iff_eq, and_self, nil_append], }, | |
{ simp only [eq_self_iff_true, heq_iff_eq, and_self], } }, | |
{ rw [list_encode, cons_append, cons_append, singleton_append, cons_append, list_decode], | |
{ have h : ∀ (i : fin φ_l), ((list.map sum.get_left (list.map (λ (i : fin φ_l), | |
sum.inl (⟨(⟨φ_n, rel φ_R ts⟩ : Σ n, L.bounded_formula α n).fst, ts i⟩ : | |
Σ n, L.term (α ⊕ fin n))) (fin_range φ_l) ++ l)).nth ↑i).join = some ⟨_, ts i⟩, | |
{ intro i, | |
simp only [option.join, map_append, map_map, option.bind_eq_some, id.def, exists_eq_right, | |
nth_eq_some, length_append, length_map, length_fin_range], | |
refine ⟨lt_of_lt_of_le i.2 le_self_add, _⟩, | |
rw [nth_le_append, nth_le_map], | |
{ simp only [sum.get_left, nth_le_fin_range, fin.eta, function.comp_app, eq_self_iff_true, | |
heq_iff_eq, and_self] }, | |
{ exact lt_of_lt_of_le i.is_lt (ge_of_eq (length_fin_range _)) }, | |
{ rw [length_map, length_fin_range], | |
exact i.2 } }, | |
rw dif_pos, swap, | |
{ exact λ i, option.is_some_iff_exists.2 ⟨⟨_, ts i⟩, h i⟩ }, | |
rw dif_pos, swap, | |
{ intro i, | |
obtain ⟨h1, h2⟩ := option.eq_some_iff_get_eq.1 (h i), | |
rw h2 }, | |
simp only [eq_self_iff_true, heq_iff_eq, true_and], | |
refine ⟨funext (λ i, _), _⟩, | |
{ obtain ⟨h1, h2⟩ := option.eq_some_iff_get_eq.1 (h i), | |
rw [eq_mp_eq_cast, cast_eq_iff_heq], | |
exact (sigma.ext_iff.1 ((sigma.eta (option.get h1)).trans h2)).2 }, | |
rw [list.drop_append_eq_append_drop, length_map, length_fin_range, nat.sub_self, drop, | |
drop_eq_nil_of_le, nil_append], | |
rw [length_map, length_fin_range], }, }, | |
{ rw [list_encode, append_assoc, cons_append, list_decode], | |
simp only [subtype.val_eq_coe] at *, | |
rw [(ih1 _).1, (ih1 _).2, (ih2 _).1, (ih2 _).2, sigma_imp, dif_pos rfl], | |
exact ⟨rfl, rfl⟩, }, | |
{ rw [list_encode, cons_append, list_decode], | |
simp only, | |
simp only [subtype.val_eq_coe] at *, | |
rw [(ih _).1, (ih _).2, sigma_all], | |
exact ⟨rfl, rfl⟩ } } | |
end | |
/-- An encoding of bounded formulas as lists. -/ | |
@[simps] protected def encoding : encoding (Σ n, L.bounded_formula α n) := | |
{ Γ := (Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ, | |
encode := λ φ, φ.2.list_encode, | |
decode := λ l, (list_decode l).1, | |
decode_encode := λ φ, begin | |
have h := list_decode_encode_list [φ], | |
rw [bind_singleton] at h, | |
rw h, | |
refl, | |
end } | |
lemma list_encode_sigma_injective : | |
function.injective (λ (φ : Σ n, L.bounded_formula α n), φ.2.list_encode) := | |
bounded_formula.encoding.encode_injective | |
theorem card_le : # (Σ n, L.bounded_formula α n) ≤ | |
max ℵ₀ (cardinal.lift.{max u v} (#α) + cardinal.lift.{u'} L.card) := | |
begin | |
refine lift_le.1 ((bounded_formula.encoding.card_le_card_list).trans _), | |
rw [encoding_Γ, mk_list_eq_max_mk_aleph_0, lift_max, lift_aleph_0, lift_max, lift_aleph_0, | |
max_le_iff], | |
refine ⟨_, le_max_left _ _⟩, | |
rw [mk_sum, term.card_sigma, mk_sum, ← add_eq_max le_rfl, mk_sum, mk_nat], | |
simp only [lift_add, lift_lift, lift_aleph_0], | |
rw [← add_assoc, add_comm, ← add_assoc, ← add_assoc, aleph_0_add_aleph_0, add_assoc, | |
add_eq_max le_rfl, add_assoc, card, symbols, mk_sum, lift_add, lift_lift, lift_lift], | |
end | |
end bounded_formula | |
end language | |
end first_order | |