/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import computability.encoding import model_theory.syntax import set_theory.cardinal.ordinal /-! # Encodings and Cardinality of First-Order Syntax ## Main Definitions * `first_order.language.term.encoding` encodes terms as lists. * `first_order.language.bounded_formula.encoding` encodes bounded formulas as lists. ## Main Results * `first_order.language.term.card_le` shows that the number of terms in `L.term α` is at most `max ℵ₀ # (α ⊕ Σ i, L.functions i)`. * `first_order.language.bounded_formula.card_le` shows that the number of bounded formulas in `Σ n, L.bounded_formula α n` is at most `max ℵ₀ (cardinal.lift.{max u v} (#α) + cardinal.lift.{u'} L.card)`. ## TODO * `primcodable` instances for terms and formulas, based on the `encoding`s * Computability facts about term and formula operations, to set up a computability approach to incompleteness -/ universes u v w u' v' namespace first_order namespace language variables {L : language.{u v}} variables {M : Type w} {N P : Type*} [L.Structure M] [L.Structure N] [L.Structure P] variables {α : Type u'} {β : Type v'} open_locale first_order cardinal open computability list Structure cardinal fin namespace term /-- Encodes a term as a list of variables and function symbols. -/ def list_encode : L.term α → list (α ⊕ Σ i, L.functions i) | (var i) := [sum.inl i] | (func f ts) := ((sum.inr (⟨_, f⟩ : Σ i, L.functions i)) :: ((list.fin_range _).bind (λ i, (ts i).list_encode))) /-- Decodes a list of variables and function symbols as a list of terms. -/ def list_decode : list (α ⊕ Σ i, L.functions i) → list (option (L.term α)) | [] := [] | ((sum.inl a) :: l) := some (var a) :: list_decode l | ((sum.inr ⟨n, f⟩) :: l) := if h : ∀ (i : fin n), ((list_decode l).nth i).join.is_some then func f (λ i, option.get (h i)) :: ((list_decode l).drop n) else [none] theorem list_decode_encode_list (l : list (L.term α)) : list_decode (l.bind list_encode) = l.map option.some := begin suffices h : ∀ (t : L.term α) (l : list (α ⊕ Σ i, L.functions i)), list_decode (t.list_encode ++ l) = some t :: list_decode l, { induction l with t l lih, { refl }, { rw [cons_bind, h t (l.bind list_encode), lih, list.map] } }, { intro t, induction t with a n f ts ih; intro l, { rw [list_encode, singleton_append, list_decode] }, { rw [list_encode, cons_append, list_decode], have h : list_decode ((fin_range n).bind (λ (i : fin n), (ts i).list_encode) ++ l) = (fin_range n).map (option.some ∘ ts) ++ list_decode l, { induction (fin_range n) with i l' l'ih, { refl }, { rw [cons_bind, append_assoc, ih, map_cons, l'ih, cons_append] } }, have h' : ∀ i, (list_decode ((fin_range n).bind (λ (i : fin n), (ts i).list_encode) ++ l)).nth ↑i = some (some (ts i)), { intro i, rw [h, nth_append, nth_map], { simp only [option.map_eq_some', function.comp_app, nth_eq_some], refine ⟨i, ⟨lt_of_lt_of_le i.2 (ge_of_eq (length_fin_range _)), _⟩, rfl⟩, rw [nth_le_fin_range, fin.eta] }, { refine lt_of_lt_of_le i.2 _, simp } }, refine (dif_pos (λ i, option.is_some_iff_exists.2 ⟨ts i, _⟩)).trans _, { rw [option.join_eq_some, h'] }, refine congr (congr rfl (congr rfl (congr rfl (funext (λ i, option.get_of_mem _ _))))) _, { simp [h'] }, { rw [h, drop_left'], rw [length_map, length_fin_range] } } } end /-- An encoding of terms as lists. -/ @[simps] protected def encoding : encoding (L.term α) := { Γ := α ⊕ Σ i, L.functions i, encode := list_encode, decode := λ l, (list_decode l).head'.join, decode_encode := λ t, begin have h := list_decode_encode_list [t], rw [bind_singleton] at h, simp only [h, option.join, head', list.map, option.some_bind, id.def], end } lemma list_encode_injective : function.injective (list_encode : L.term α → list (α ⊕ Σ i, L.functions i)) := term.encoding.encode_injective theorem card_le : # (L.term α) ≤ max ℵ₀ (# (α ⊕ Σ i, L.functions i)) := lift_le.1 (trans term.encoding.card_le_card_list (lift_le.2 (mk_list_le_max _))) theorem card_sigma : # (Σ n, (L.term (α ⊕ fin n))) = max ℵ₀ (# (α ⊕ Σ i, L.functions i)) := begin refine le_antisymm _ _, { rw mk_sigma, refine (sum_le_supr_lift _).trans _, rw [mk_nat, lift_aleph_0, mul_eq_max_of_aleph_0_le_left le_rfl, max_le_iff, csupr_le_iff' (bdd_above_range _)], { refine ⟨le_max_left _ _, λ i, card_le.trans _⟩, rw max_le_iff, refine ⟨le_max_left _ _, _⟩, rw [← add_eq_max le_rfl, mk_sum, mk_sum, mk_sum, add_comm (cardinal.lift (#α)), lift_add, add_assoc, lift_lift, lift_lift], refine add_le_add_right _ _, rw [lift_le_aleph_0, ← encodable_iff], exact ⟨infer_instance⟩ }, { rw [← one_le_iff_ne_zero], refine trans _ (le_csupr (bdd_above_range _) 1), rw [one_le_iff_ne_zero, mk_ne_zero_iff], exact ⟨var (sum.inr 0)⟩ } }, { rw [max_le_iff, ← infinite_iff], refine ⟨infinite.of_injective (λ i, ⟨i + 1, var (sum.inr i)⟩) (λ i j ij, _), _⟩, { cases ij, refl }, { rw [cardinal.le_def], refine ⟨⟨sum.elim (λ i, ⟨0, var (sum.inl i)⟩) (λ F, ⟨1, func F.2 (λ _, var (sum.inr 0))⟩), _⟩⟩, { rintros (a | a) (b | b) h, { simp only [sum.elim_inl, eq_self_iff_true, heq_iff_eq, true_and] at h, rw h }, { simp only [sum.elim_inl, sum.elim_inr, nat.zero_ne_one, false_and] at h, exact h.elim }, { simp only [sum.elim_inr, sum.elim_inl, nat.one_ne_zero, false_and] at h, exact h.elim }, { simp only [sum.elim_inr, eq_self_iff_true, heq_iff_eq, true_and] at h, rw sigma.ext_iff.2 ⟨h.1, h.2.1⟩, } } } } end instance [encodable α] [encodable ((Σ i, L.functions i))] : encodable (L.term α) := encodable.of_left_injection list_encode (λ l, (list_decode l).head'.join) (λ t, begin rw [← bind_singleton list_encode, list_decode_encode_list], simp only [option.join, head', list.map, option.some_bind, id.def], end) lemma card_le_aleph_0 [h1 : nonempty (encodable α)] [h2 : L.countable_functions] : # (L.term α) ≤ ℵ₀ := begin refine (card_le.trans _), rw [max_le_iff], simp only [le_refl, mk_sum, add_le_aleph_0, lift_le_aleph_0, true_and], exact ⟨encodable_iff.1 h1, L.card_functions_le_aleph_0⟩, end instance small [small.{u} α] : small.{u} (L.term α) := small_of_injective list_encode_injective end term namespace bounded_formula /-- Encodes a bounded formula as a list of symbols. -/ def list_encode : ∀ {n : ℕ}, L.bounded_formula α n → list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ) | n falsum := [sum.inr (sum.inr (n + 2))] | n (equal t₁ t₂) := [sum.inl ⟨_, t₁⟩, sum.inl ⟨_, t₂⟩] | n (rel R ts) := [sum.inr (sum.inl ⟨_, R⟩), sum.inr (sum.inr n)] ++ ((list.fin_range _).map (λ i, sum.inl ⟨n, (ts i)⟩)) | n (imp φ₁ φ₂) := (sum.inr (sum.inr 0)) :: φ₁.list_encode ++ φ₂.list_encode | n (all φ) := (sum.inr (sum.inr 1)) :: φ.list_encode /-- Applies the `forall` quantifier to an element of `(Σ n, L.bounded_formula α n)`, or returns `default` if not possible. -/ def sigma_all : (Σ n, L.bounded_formula α n) → Σ n, L.bounded_formula α n | ⟨(n + 1), φ⟩ := ⟨n, φ.all⟩ | _ := default /-- Applies `imp` to two elements of `(Σ n, L.bounded_formula α n)`, or returns `default` if not possible. -/ def sigma_imp : (Σ n, L.bounded_formula α n) → (Σ n, L.bounded_formula α n) → (Σ n, L.bounded_formula α n) | ⟨m, φ⟩ ⟨n, ψ⟩ := if h : m = n then ⟨m, φ.imp (eq.mp (by rw h) ψ)⟩ else default /-- Decodes a list of symbols as a list of formulas. -/ @[simp] def list_decode : Π (l : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ)), (Σ n, L.bounded_formula α n) × { l' : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ) // l'.sizeof ≤ max 1 l.sizeof } | ((sum.inr (sum.inr (n + 2))) :: l) := ⟨⟨n, falsum⟩, l, le_max_of_le_right le_add_self⟩ | ((sum.inl ⟨n₁, t₁⟩) :: sum.inl ⟨n₂, t₂⟩ :: l) := ⟨if h : n₁ = n₂ then ⟨n₁, equal t₁ (eq.mp (by rw h) t₂)⟩ else default, l, begin simp only [list.sizeof, ← add_assoc], exact le_max_of_le_right le_add_self, end⟩ | (sum.inr (sum.inl ⟨n, R⟩) :: (sum.inr (sum.inr k)) :: l) := ⟨ if h : ∀ (i : fin n), ((l.map sum.get_left).nth i).join.is_some then if h' : ∀ i, (option.get (h i)).1 = k then ⟨k, bounded_formula.rel R (λ i, eq.mp (by rw h' i) (option.get (h i)).2)⟩ else default else default, l.drop n, le_max_of_le_right (le_add_left (le_add_left (list.drop_sizeof_le _ _)))⟩ | ((sum.inr (sum.inr 0)) :: l) := have (↑((list_decode l).2) : list ((Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ)).sizeof < 1 + (1 + 1) + l.sizeof, from begin refine lt_of_le_of_lt (list_decode l).2.2 (max_lt _ (nat.lt_add_of_pos_left dec_trivial)), rw [add_assoc, add_comm, nat.lt_succ_iff, add_assoc], exact le_self_add, end, ⟨sigma_imp (list_decode l).1 (list_decode (list_decode l).2).1, (list_decode (list_decode l).2).2, le_max_of_le_right (trans (list_decode _).2.2 (max_le (le_add_right le_self_add) (trans (list_decode _).2.2 (max_le (le_add_right le_self_add) le_add_self))))⟩ | ((sum.inr (sum.inr 1)) :: l) := ⟨sigma_all (list_decode l).1, (list_decode l).2, (list_decode l).2.2.trans (max_le_max le_rfl le_add_self)⟩ | _ := ⟨default, [], le_max_left _ _⟩ @[simp] theorem list_decode_encode_list (l : list (Σ n, L.bounded_formula α n)) : (list_decode (l.bind (λ φ, φ.2.list_encode))).1 = l.head := begin suffices h : ∀ (φ : (Σ n, L.bounded_formula α n)) l, (list_decode (list_encode φ.2 ++ l)).1 = φ ∧ (list_decode (list_encode φ.2 ++ l)).2.1 = l, { induction l with φ l lih, { rw [list.nil_bind], simp [list_decode], }, { rw [cons_bind, (h φ _).1, head_cons] } }, { rintro ⟨n, φ⟩, induction φ with _ _ _ _ _ _ _ ts _ _ _ ih1 ih2 _ _ ih; intro l, { rw [list_encode, singleton_append, list_decode], simp only [eq_self_iff_true, heq_iff_eq, and_self], }, { rw [list_encode, cons_append, cons_append, list_decode, dif_pos], { simp only [eq_mp_eq_cast, cast_eq, eq_self_iff_true, heq_iff_eq, and_self, nil_append], }, { simp only [eq_self_iff_true, heq_iff_eq, and_self], } }, { rw [list_encode, cons_append, cons_append, singleton_append, cons_append, list_decode], { have h : ∀ (i : fin φ_l), ((list.map sum.get_left (list.map (λ (i : fin φ_l), sum.inl (⟨(⟨φ_n, rel φ_R ts⟩ : Σ n, L.bounded_formula α n).fst, ts i⟩ : Σ n, L.term (α ⊕ fin n))) (fin_range φ_l) ++ l)).nth ↑i).join = some ⟨_, ts i⟩, { intro i, simp only [option.join, map_append, map_map, option.bind_eq_some, id.def, exists_eq_right, nth_eq_some, length_append, length_map, length_fin_range], refine ⟨lt_of_lt_of_le i.2 le_self_add, _⟩, rw [nth_le_append, nth_le_map], { simp only [sum.get_left, nth_le_fin_range, fin.eta, function.comp_app, eq_self_iff_true, heq_iff_eq, and_self] }, { exact lt_of_lt_of_le i.is_lt (ge_of_eq (length_fin_range _)) }, { rw [length_map, length_fin_range], exact i.2 } }, rw dif_pos, swap, { exact λ i, option.is_some_iff_exists.2 ⟨⟨_, ts i⟩, h i⟩ }, rw dif_pos, swap, { intro i, obtain ⟨h1, h2⟩ := option.eq_some_iff_get_eq.1 (h i), rw h2 }, simp only [eq_self_iff_true, heq_iff_eq, true_and], refine ⟨funext (λ i, _), _⟩, { obtain ⟨h1, h2⟩ := option.eq_some_iff_get_eq.1 (h i), rw [eq_mp_eq_cast, cast_eq_iff_heq], exact (sigma.ext_iff.1 ((sigma.eta (option.get h1)).trans h2)).2 }, rw [list.drop_append_eq_append_drop, length_map, length_fin_range, nat.sub_self, drop, drop_eq_nil_of_le, nil_append], rw [length_map, length_fin_range], }, }, { rw [list_encode, append_assoc, cons_append, list_decode], simp only [subtype.val_eq_coe] at *, rw [(ih1 _).1, (ih1 _).2, (ih2 _).1, (ih2 _).2, sigma_imp, dif_pos rfl], exact ⟨rfl, rfl⟩, }, { rw [list_encode, cons_append, list_decode], simp only, simp only [subtype.val_eq_coe] at *, rw [(ih _).1, (ih _).2, sigma_all], exact ⟨rfl, rfl⟩ } } end /-- An encoding of bounded formulas as lists. -/ @[simps] protected def encoding : encoding (Σ n, L.bounded_formula α n) := { Γ := (Σ k, L.term (α ⊕ fin k)) ⊕ (Σ n, L.relations n) ⊕ ℕ, encode := λ φ, φ.2.list_encode, decode := λ l, (list_decode l).1, decode_encode := λ φ, begin have h := list_decode_encode_list [φ], rw [bind_singleton] at h, rw h, refl, end } lemma list_encode_sigma_injective : function.injective (λ (φ : Σ n, L.bounded_formula α n), φ.2.list_encode) := bounded_formula.encoding.encode_injective theorem card_le : # (Σ n, L.bounded_formula α n) ≤ max ℵ₀ (cardinal.lift.{max u v} (#α) + cardinal.lift.{u'} L.card) := begin refine lift_le.1 ((bounded_formula.encoding.card_le_card_list).trans _), rw [encoding_Γ, mk_list_eq_max_mk_aleph_0, lift_max, lift_aleph_0, lift_max, lift_aleph_0, max_le_iff], refine ⟨_, le_max_left _ _⟩, rw [mk_sum, term.card_sigma, mk_sum, ← add_eq_max le_rfl, mk_sum, mk_nat], simp only [lift_add, lift_lift, lift_aleph_0], rw [← add_assoc, add_comm, ← add_assoc, ← add_assoc, aleph_0_add_aleph_0, add_assoc, add_eq_max le_rfl, add_assoc, card, symbols, mk_sum, lift_add, lift_lift, lift_lift], end end bounded_formula end language end first_order