Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Thomas Browning and Patrick Lutz. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Thomas Browning, Patrick Lutz | |
-/ | |
import group_theory.solvable | |
import field_theory.polynomial_galois_group | |
import ring_theory.roots_of_unity | |
/-! | |
# The Abel-Ruffini Theorem | |
This file proves one direction of the Abel-Ruffini theorem, namely that if an element is solvable | |
by radicals, then its minimal polynomial has solvable Galois group. | |
## Main definitions | |
* `solvable_by_rad F E` : the intermediate field of solvable-by-radicals elements | |
## Main results | |
* the Abel-Ruffini Theorem `solvable_by_rad.is_solvable'` : An irreducible polynomial with a root | |
that is solvable by radicals has a solvable Galois group. | |
-/ | |
noncomputable theory | |
open_locale classical polynomial | |
open polynomial intermediate_field | |
section abel_ruffini | |
variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E] | |
lemma gal_zero_is_solvable : is_solvable (0 : F[X]).gal := | |
by apply_instance | |
lemma gal_one_is_solvable : is_solvable (1 : F[X]).gal := | |
by apply_instance | |
lemma gal_C_is_solvable (x : F) : is_solvable (C x).gal := | |
by apply_instance | |
lemma gal_X_is_solvable : is_solvable (X : F[X]).gal := | |
by apply_instance | |
lemma gal_X_sub_C_is_solvable (x : F) : is_solvable (X - C x).gal := | |
by apply_instance | |
lemma gal_X_pow_is_solvable (n : ℕ) : is_solvable (X ^ n : F[X]).gal := | |
by apply_instance | |
lemma gal_mul_is_solvable {p q : F[X]} | |
(hp : is_solvable p.gal) (hq : is_solvable q.gal) : is_solvable (p * q).gal := | |
solvable_of_solvable_injective (gal.restrict_prod_injective p q) | |
lemma gal_prod_is_solvable {s : multiset F[X]} | |
(hs : ∀ p ∈ s, is_solvable (gal p)) : is_solvable s.prod.gal := | |
begin | |
apply multiset.induction_on' s, | |
{ exact gal_one_is_solvable }, | |
{ intros p t hps hts ht, | |
rw [multiset.insert_eq_cons, multiset.prod_cons], | |
exact gal_mul_is_solvable (hs p hps) ht }, | |
end | |
lemma gal_is_solvable_of_splits {p q : F[X]} | |
(hpq : fact (p.splits (algebra_map F q.splitting_field))) (hq : is_solvable q.gal) : | |
is_solvable p.gal := | |
begin | |
haveI : is_solvable (q.splitting_field ≃ₐ[F] q.splitting_field) := hq, | |
exact solvable_of_surjective (alg_equiv.restrict_normal_hom_surjective q.splitting_field), | |
end | |
lemma gal_is_solvable_tower (p q : F[X]) | |
(hpq : p.splits (algebra_map F q.splitting_field)) | |
(hp : is_solvable p.gal) | |
(hq : is_solvable (q.map (algebra_map F p.splitting_field)).gal) : | |
is_solvable q.gal := | |
begin | |
let K := p.splitting_field, | |
let L := q.splitting_field, | |
haveI : fact (p.splits (algebra_map F L)) := ⟨hpq⟩, | |
let ϕ : (L ≃ₐ[K] L) ≃* (q.map (algebra_map F K)).gal := | |
(is_splitting_field.alg_equiv L (q.map (algebra_map F K))).aut_congr, | |
have ϕ_inj : function.injective ϕ.to_monoid_hom := ϕ.injective, | |
haveI : is_solvable (K ≃ₐ[F] K) := hp, | |
haveI : is_solvable (L ≃ₐ[K] L) := solvable_of_solvable_injective ϕ_inj, | |
exact is_solvable_of_is_scalar_tower F p.splitting_field q.splitting_field, | |
end | |
section gal_X_pow_sub_C | |
lemma gal_X_pow_sub_one_is_solvable (n : ℕ) : is_solvable (X ^ n - 1 : F[X]).gal := | |
begin | |
by_cases hn : n = 0, | |
{ rw [hn, pow_zero, sub_self], | |
exact gal_zero_is_solvable }, | |
have hn' : 0 < n := pos_iff_ne_zero.mpr hn, | |
have hn'' : (X ^ n - 1 : F[X]) ≠ 0 := | |
λ h, one_ne_zero ((leading_coeff_X_pow_sub_one hn').symm.trans (congr_arg leading_coeff h)), | |
apply is_solvable_of_comm, | |
intros σ τ, | |
ext a ha, | |
rw [mem_root_set hn'', alg_hom.map_sub, aeval_X_pow, aeval_one, sub_eq_zero] at ha, | |
have key : ∀ σ : (X ^ n - 1 : F[X]).gal, ∃ m : ℕ, σ a = a ^ m, | |
{ intro σ, | |
obtain ⟨m, hm⟩ := map_root_of_unity_eq_pow_self σ.to_alg_hom | |
⟨is_unit.unit (is_unit_of_pow_eq_one a n ha hn'), | |
by { ext, rwa [units.coe_pow, is_unit.unit_spec, subtype.coe_mk n hn'] }⟩, | |
use m, | |
convert hm }, | |
obtain ⟨c, hc⟩ := key σ, | |
obtain ⟨d, hd⟩ := key τ, | |
rw [σ.mul_apply, τ.mul_apply, hc, τ.map_pow, hd, σ.map_pow, hc, ←pow_mul, pow_mul'], | |
end | |
lemma gal_X_pow_sub_C_is_solvable_aux (n : ℕ) (a : F) | |
(h : (X ^ n - 1 : F[X]).splits (ring_hom.id F)) : is_solvable (X ^ n - C a).gal := | |
begin | |
by_cases ha : a = 0, | |
{ rw [ha, C_0, sub_zero], | |
exact gal_X_pow_is_solvable n }, | |
have ha' : algebra_map F (X ^ n - C a).splitting_field a ≠ 0 := | |
mt ((injective_iff_map_eq_zero _).mp (ring_hom.injective _) a) ha, | |
by_cases hn : n = 0, | |
{ rw [hn, pow_zero, ←C_1, ←C_sub], | |
exact gal_C_is_solvable (1 - a) }, | |
have hn' : 0 < n := pos_iff_ne_zero.mpr hn, | |
have hn'' : X ^ n - C a ≠ 0 := | |
λ h, one_ne_zero ((leading_coeff_X_pow_sub_C hn').symm.trans (congr_arg leading_coeff h)), | |
have hn''' : (X ^ n - 1 : F[X]) ≠ 0 := | |
λ h, one_ne_zero ((leading_coeff_X_pow_sub_one hn').symm.trans (congr_arg leading_coeff h)), | |
have mem_range : ∀ {c}, c ^ n = 1 → ∃ d, algebra_map F (X ^ n - C a).splitting_field d = c := | |
λ c hc, ring_hom.mem_range.mp (minpoly.mem_range_of_degree_eq_one F c (or.resolve_left h hn''' | |
(minpoly.irreducible ((splitting_field.normal (X ^ n - C a)).is_integral c)) (minpoly.dvd F c | |
(by rwa [map_id, alg_hom.map_sub, sub_eq_zero, aeval_X_pow, aeval_one])))), | |
apply is_solvable_of_comm, | |
intros σ τ, | |
ext b hb, | |
rw [mem_root_set hn'', alg_hom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hb, | |
have hb' : b ≠ 0, | |
{ intro hb', | |
rw [hb', zero_pow hn'] at hb, | |
exact ha' hb.symm }, | |
have key : ∀ σ : (X ^ n - C a).gal, ∃ c, σ b = b * algebra_map F _ c, | |
{ intro σ, | |
have key : (σ b / b) ^ n = 1 := by rw [div_pow, ←σ.map_pow, hb, σ.commutes, div_self ha'], | |
obtain ⟨c, hc⟩ := mem_range key, | |
use c, | |
rw [hc, mul_div_cancel' (σ b) hb'] }, | |
obtain ⟨c, hc⟩ := key σ, | |
obtain ⟨d, hd⟩ := key τ, | |
rw [σ.mul_apply, τ.mul_apply, hc, τ.map_mul, τ.commutes, hd, σ.map_mul, σ.commutes, hc], | |
rw [mul_assoc, mul_assoc, mul_right_inj' hb', mul_comm], | |
end | |
lemma splits_X_pow_sub_one_of_X_pow_sub_C {F : Type*} [field F] {E : Type*} [field E] | |
(i : F →+* E) (n : ℕ) {a : F} (ha : a ≠ 0) (h : (X ^ n - C a).splits i) : (X ^ n - 1).splits i := | |
begin | |
have ha' : i a ≠ 0 := mt ((injective_iff_map_eq_zero i).mp (i.injective) a) ha, | |
by_cases hn : n = 0, | |
{ rw [hn, pow_zero, sub_self], | |
exact splits_zero i }, | |
have hn' : 0 < n := pos_iff_ne_zero.mpr hn, | |
have hn'' : (X ^ n - C a).degree ≠ 0 := | |
ne_of_eq_of_ne (degree_X_pow_sub_C hn' a) (mt with_bot.coe_eq_coe.mp hn), | |
obtain ⟨b, hb⟩ := exists_root_of_splits i h hn'', | |
rw [eval₂_sub, eval₂_X_pow, eval₂_C, sub_eq_zero] at hb, | |
have hb' : b ≠ 0, | |
{ intro hb', | |
rw [hb', zero_pow hn'] at hb, | |
exact ha' hb.symm }, | |
let s := ((X ^ n - C a).map i).roots, | |
have hs : _ = _ * (s.map _).prod := eq_prod_roots_of_splits h, | |
rw [leading_coeff_X_pow_sub_C hn', ring_hom.map_one, C_1, one_mul] at hs, | |
have hs' : s.card = n := (nat_degree_eq_card_roots h).symm.trans nat_degree_X_pow_sub_C, | |
apply @splits_of_exists_multiset F E _ _ i (X ^ n - 1) (s.map (λ c : E, c / b)), | |
rw [leading_coeff_X_pow_sub_one hn', ring_hom.map_one, C_1, one_mul, multiset.map_map], | |
have C_mul_C : (C (i a⁻¹)) * (C (i a)) = 1, | |
{ rw [←C_mul, ←i.map_mul, inv_mul_cancel ha, i.map_one, C_1] }, | |
have key1 : (X ^ n - 1).map i = C (i a⁻¹) * ((X ^ n - C a).map i).comp (C b * X), | |
{ rw [polynomial.map_sub, polynomial.map_sub, polynomial.map_pow, map_X, map_C, | |
polynomial.map_one, sub_comp, pow_comp, X_comp, C_comp, mul_pow, ←C_pow, hb, mul_sub, | |
←mul_assoc, C_mul_C, one_mul] }, | |
have key2 : (λ q : E[X], q.comp (C b * X)) ∘ (λ c : E, X - C c) = | |
(λ c : E, C b * (X - C (c / b))), | |
{ ext1 c, | |
change (X - C c).comp (C b * X) = C b * (X - C (c / b)), | |
rw [sub_comp, X_comp, C_comp, mul_sub, ←C_mul, mul_div_cancel' c hb'] }, | |
rw [key1, hs, multiset_prod_comp, multiset.map_map, key2, multiset.prod_map_mul, | |
multiset.map_const, multiset.prod_repeat, hs', ←C_pow, hb, ←mul_assoc, C_mul_C, one_mul], | |
all_goals { exact field.to_nontrivial F }, | |
end | |
lemma gal_X_pow_sub_C_is_solvable (n : ℕ) (x : F) : is_solvable (X ^ n - C x).gal := | |
begin | |
by_cases hx : x = 0, | |
{ rw [hx, C_0, sub_zero], | |
exact gal_X_pow_is_solvable n }, | |
apply gal_is_solvable_tower (X ^ n - 1) (X ^ n - C x), | |
{ exact splits_X_pow_sub_one_of_X_pow_sub_C _ n hx (splitting_field.splits _) }, | |
{ exact gal_X_pow_sub_one_is_solvable n }, | |
{ rw [polynomial.map_sub, polynomial.map_pow, map_X, map_C], | |
apply gal_X_pow_sub_C_is_solvable_aux, | |
have key := splitting_field.splits (X ^ n - 1 : F[X]), | |
rwa [←splits_id_iff_splits, polynomial.map_sub, polynomial.map_pow, map_X, polynomial.map_one] | |
at key } | |
end | |
end gal_X_pow_sub_C | |
variables (F) | |
/-- Inductive definition of solvable by radicals -/ | |
inductive is_solvable_by_rad : E → Prop | |
| base (a : F) : is_solvable_by_rad (algebra_map F E a) | |
| add (a b : E) : is_solvable_by_rad a → is_solvable_by_rad b → is_solvable_by_rad (a + b) | |
| neg (α : E) : is_solvable_by_rad α → is_solvable_by_rad (-α) | |
| mul (α β : E) : is_solvable_by_rad α → is_solvable_by_rad β → is_solvable_by_rad (α * β) | |
| inv (α : E) : is_solvable_by_rad α → is_solvable_by_rad α⁻¹ | |
| rad (α : E) (n : ℕ) (hn : n ≠ 0) : is_solvable_by_rad (α^n) → is_solvable_by_rad α | |
variables (E) | |
/-- The intermediate field of solvable-by-radicals elements -/ | |
def solvable_by_rad : intermediate_field F E := | |
{ carrier := is_solvable_by_rad F, | |
zero_mem' := by { convert is_solvable_by_rad.base (0 : F), rw ring_hom.map_zero }, | |
add_mem' := is_solvable_by_rad.add, | |
neg_mem' := is_solvable_by_rad.neg, | |
one_mem' := by { convert is_solvable_by_rad.base (1 : F), rw ring_hom.map_one }, | |
mul_mem' := is_solvable_by_rad.mul, | |
inv_mem' := is_solvable_by_rad.inv, | |
algebra_map_mem' := is_solvable_by_rad.base } | |
namespace solvable_by_rad | |
variables {F} {E} {α : E} | |
lemma induction (P : solvable_by_rad F E → Prop) | |
(base : ∀ α : F, P (algebra_map F (solvable_by_rad F E) α)) | |
(add : ∀ α β : solvable_by_rad F E, P α → P β → P (α + β)) | |
(neg : ∀ α : solvable_by_rad F E, P α → P (-α)) | |
(mul : ∀ α β : solvable_by_rad F E, P α → P β → P (α * β)) | |
(inv : ∀ α : solvable_by_rad F E, P α → P α⁻¹) | |
(rad : ∀ α : solvable_by_rad F E, ∀ n : ℕ, n ≠ 0 → P (α^n) → P α) | |
(α : solvable_by_rad F E) : P α := | |
begin | |
revert α, | |
suffices : ∀ (α : E), is_solvable_by_rad F α → (∃ β : solvable_by_rad F E, ↑β = α ∧ P β), | |
{ intro α, | |
obtain ⟨α₀, hα₀, Pα⟩ := this α (subtype.mem α), | |
convert Pα, | |
exact subtype.ext hα₀.symm }, | |
apply is_solvable_by_rad.rec, | |
{ exact λ α, ⟨algebra_map F (solvable_by_rad F E) α, rfl, base α⟩ }, | |
{ intros α β hα hβ Pα Pβ, | |
obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩, | |
exact ⟨α₀ + β₀, by {rw [←hα₀, ←hβ₀], refl }, add α₀ β₀ Pα Pβ⟩ }, | |
{ intros α hα Pα, | |
obtain ⟨α₀, hα₀, Pα⟩ := Pα, | |
exact ⟨-α₀, by {rw ←hα₀, refl }, neg α₀ Pα⟩ }, | |
{ intros α β hα hβ Pα Pβ, | |
obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩, | |
exact ⟨α₀ * β₀, by {rw [←hα₀, ←hβ₀], refl }, mul α₀ β₀ Pα Pβ⟩ }, | |
{ intros α hα Pα, | |
obtain ⟨α₀, hα₀, Pα⟩ := Pα, | |
exact ⟨α₀⁻¹, by {rw ←hα₀, refl }, inv α₀ Pα⟩ }, | |
{ intros α n hn hα Pα, | |
obtain ⟨α₀, hα₀, Pα⟩ := Pα, | |
refine ⟨⟨α, is_solvable_by_rad.rad α n hn hα⟩, rfl, rad _ n hn _⟩, | |
convert Pα, | |
exact subtype.ext (eq.trans ((solvable_by_rad F E).coe_pow _ n) hα₀.symm) } | |
end | |
theorem is_integral (α : solvable_by_rad F E) : is_integral F α := | |
begin | |
revert α, | |
apply solvable_by_rad.induction, | |
{ exact λ _, is_integral_algebra_map }, | |
{ exact λ _ _, is_integral_add }, | |
{ exact λ _, is_integral_neg }, | |
{ exact λ _ _, is_integral_mul }, | |
{ exact λ α hα, subalgebra.inv_mem_of_algebraic (integral_closure F (solvable_by_rad F E)) | |
(show is_algebraic F ↑(⟨α, hα⟩ : integral_closure F (solvable_by_rad F E)), | |
by exact is_algebraic_iff_is_integral.mpr hα) }, | |
{ intros α n hn hα, | |
obtain ⟨p, h1, h2⟩ := is_algebraic_iff_is_integral.mpr hα, | |
refine is_algebraic_iff_is_integral.mp ⟨p.comp (X ^ n), | |
⟨λ h, h1 (leading_coeff_eq_zero.mp _), by rw [aeval_comp, aeval_X_pow, h2]⟩⟩, | |
rwa [←leading_coeff_eq_zero, leading_coeff_comp, leading_coeff_X_pow, one_pow, mul_one] at h, | |
rwa nat_degree_X_pow } | |
end | |
/-- The statement to be proved inductively -/ | |
def P (α : solvable_by_rad F E) : Prop := is_solvable (minpoly F α).gal | |
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ | |
lemma induction3 {α : solvable_by_rad F E} {n : ℕ} (hn : n ≠ 0) (hα : P (α ^ n)) : P α := | |
begin | |
let p := minpoly F (α ^ n), | |
have hp : p.comp (X ^ n) ≠ 0, | |
{ intro h, | |
cases (comp_eq_zero_iff.mp h) with h' h', | |
{ exact minpoly.ne_zero (is_integral (α ^ n)) h' }, | |
{ exact hn (by rw [←nat_degree_C _, ←h'.2, nat_degree_X_pow]) } }, | |
apply gal_is_solvable_of_splits, | |
{ exact ⟨splits_of_splits_of_dvd _ hp (splitting_field.splits (p.comp (X ^ n))) | |
(minpoly.dvd F α (by rw [aeval_comp, aeval_X_pow, minpoly.aeval]))⟩ }, | |
{ refine gal_is_solvable_tower p (p.comp (X ^ n)) _ hα _, | |
{ exact gal.splits_in_splitting_field_of_comp _ _ (by rwa [nat_degree_X_pow]) }, | |
{ obtain ⟨s, hs⟩ := (splits_iff_exists_multiset _).1 (splitting_field.splits p), | |
rw [map_comp, polynomial.map_pow, map_X, hs, mul_comp, C_comp], | |
apply gal_mul_is_solvable (gal_C_is_solvable _), | |
rw multiset_prod_comp, | |
apply gal_prod_is_solvable, | |
intros q hq, | |
rw multiset.mem_map at hq, | |
obtain ⟨q, hq, rfl⟩ := hq, | |
rw multiset.mem_map at hq, | |
obtain ⟨q, hq, rfl⟩ := hq, | |
rw [sub_comp, X_comp, C_comp], | |
exact gal_X_pow_sub_C_is_solvable n q } }, | |
end | |
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ | |
lemma induction2 {α β γ : solvable_by_rad F E} (hγ : γ ∈ F⟮α, β⟯) (hα : P α) (hβ : P β) : P γ := | |
begin | |
let p := (minpoly F α), | |
let q := (minpoly F β), | |
have hpq := polynomial.splits_of_splits_mul _ (mul_ne_zero (minpoly.ne_zero (is_integral α)) | |
(minpoly.ne_zero (is_integral β))) (splitting_field.splits (p * q)), | |
let f : F⟮α, β⟯ →ₐ[F] (p * q).splitting_field := classical.choice (alg_hom_mk_adjoin_splits | |
begin | |
intros x hx, | |
cases hx, | |
rw hx, | |
exact ⟨is_integral α, hpq.1⟩, | |
cases hx, | |
exact ⟨is_integral β, hpq.2⟩, | |
end), | |
have key : minpoly F γ = minpoly F (f ⟨γ, hγ⟩) := minpoly.eq_of_irreducible_of_monic | |
(minpoly.irreducible (is_integral γ)) begin | |
suffices : aeval (⟨γ, hγ⟩ : F ⟮α, β⟯) (minpoly F γ) = 0, | |
{ rw [aeval_alg_hom_apply, this, alg_hom.map_zero] }, | |
apply (algebra_map F⟮α, β⟯ (solvable_by_rad F E)).injective, | |
rw [ring_hom.map_zero, is_scalar_tower.algebra_map_aeval], | |
exact minpoly.aeval F γ, | |
end (minpoly.monic (is_integral γ)), | |
rw [P, key], | |
exact gal_is_solvable_of_splits ⟨normal.splits (splitting_field.normal _) _⟩ | |
(gal_mul_is_solvable hα hβ), | |
end | |
/-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ | |
lemma induction1 {α β : solvable_by_rad F E} (hβ : β ∈ F⟮α⟯) (hα : P α) : P β := | |
induction2 (adjoin.mono F _ _ (ge_of_eq (set.pair_eq_singleton α)) hβ) hα hα | |
theorem is_solvable (α : solvable_by_rad F E) : | |
is_solvable (minpoly F α).gal := | |
begin | |
revert α, | |
apply solvable_by_rad.induction, | |
{ exact λ α, by { rw minpoly.eq_X_sub_C, exact gal_X_sub_C_is_solvable α } }, | |
{ exact λ α β, induction2 (add_mem (subset_adjoin F _ (set.mem_insert α _)) | |
(subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) }, | |
{ exact λ α, induction1 (neg_mem (mem_adjoin_simple_self F α)) }, | |
{ exact λ α β, induction2 (mul_mem (subset_adjoin F _ (set.mem_insert α _)) | |
(subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) }, | |
{ exact λ α, induction1 (inv_mem (mem_adjoin_simple_self F α)) }, | |
{ exact λ α n, induction3 }, | |
end | |
/-- **Abel-Ruffini Theorem** (one direction): An irreducible polynomial with an | |
`is_solvable_by_rad` root has solvable Galois group -/ | |
lemma is_solvable' {α : E} {q : F[X]} (q_irred : irreducible q) | |
(q_aeval : aeval α q = 0) (hα : is_solvable_by_rad F α) : | |
_root_.is_solvable q.gal := | |
begin | |
haveI : _root_.is_solvable (q * C q.leading_coeff⁻¹).gal, | |
{ rw [minpoly.eq_of_irreducible q_irred q_aeval, | |
←show minpoly F (⟨α, hα⟩ : solvable_by_rad F E) = minpoly F α, | |
from minpoly.eq_of_algebra_map_eq (ring_hom.injective _) (is_integral ⟨α, hα⟩) rfl], | |
exact is_solvable ⟨α, hα⟩ }, | |
refine solvable_of_surjective (gal.restrict_dvd_surjective ⟨C q.leading_coeff⁻¹, rfl⟩ _), | |
rw [mul_ne_zero_iff, ne, ne, C_eq_zero, inv_eq_zero], | |
exact ⟨q_irred.ne_zero, leading_coeff_ne_zero.mpr q_irred.ne_zero⟩, | |
end | |
end solvable_by_rad | |
end abel_ruffini | |