/- Copyright (c) 2020 Thomas Browning and Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning, Patrick Lutz -/ import group_theory.solvable import field_theory.polynomial_galois_group import ring_theory.roots_of_unity /-! # The Abel-Ruffini Theorem This file proves one direction of the Abel-Ruffini theorem, namely that if an element is solvable by radicals, then its minimal polynomial has solvable Galois group. ## Main definitions * `solvable_by_rad F E` : the intermediate field of solvable-by-radicals elements ## Main results * the Abel-Ruffini Theorem `solvable_by_rad.is_solvable'` : An irreducible polynomial with a root that is solvable by radicals has a solvable Galois group. -/ noncomputable theory open_locale classical polynomial open polynomial intermediate_field section abel_ruffini variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E] lemma gal_zero_is_solvable : is_solvable (0 : F[X]).gal := by apply_instance lemma gal_one_is_solvable : is_solvable (1 : F[X]).gal := by apply_instance lemma gal_C_is_solvable (x : F) : is_solvable (C x).gal := by apply_instance lemma gal_X_is_solvable : is_solvable (X : F[X]).gal := by apply_instance lemma gal_X_sub_C_is_solvable (x : F) : is_solvable (X - C x).gal := by apply_instance lemma gal_X_pow_is_solvable (n : ℕ) : is_solvable (X ^ n : F[X]).gal := by apply_instance lemma gal_mul_is_solvable {p q : F[X]} (hp : is_solvable p.gal) (hq : is_solvable q.gal) : is_solvable (p * q).gal := solvable_of_solvable_injective (gal.restrict_prod_injective p q) lemma gal_prod_is_solvable {s : multiset F[X]} (hs : ∀ p ∈ s, is_solvable (gal p)) : is_solvable s.prod.gal := begin apply multiset.induction_on' s, { exact gal_one_is_solvable }, { intros p t hps hts ht, rw [multiset.insert_eq_cons, multiset.prod_cons], exact gal_mul_is_solvable (hs p hps) ht }, end lemma gal_is_solvable_of_splits {p q : F[X]} (hpq : fact (p.splits (algebra_map F q.splitting_field))) (hq : is_solvable q.gal) : is_solvable p.gal := begin haveI : is_solvable (q.splitting_field ≃ₐ[F] q.splitting_field) := hq, exact solvable_of_surjective (alg_equiv.restrict_normal_hom_surjective q.splitting_field), end lemma gal_is_solvable_tower (p q : F[X]) (hpq : p.splits (algebra_map F q.splitting_field)) (hp : is_solvable p.gal) (hq : is_solvable (q.map (algebra_map F p.splitting_field)).gal) : is_solvable q.gal := begin let K := p.splitting_field, let L := q.splitting_field, haveI : fact (p.splits (algebra_map F L)) := ⟨hpq⟩, let ϕ : (L ≃ₐ[K] L) ≃* (q.map (algebra_map F K)).gal := (is_splitting_field.alg_equiv L (q.map (algebra_map F K))).aut_congr, have ϕ_inj : function.injective ϕ.to_monoid_hom := ϕ.injective, haveI : is_solvable (K ≃ₐ[F] K) := hp, haveI : is_solvable (L ≃ₐ[K] L) := solvable_of_solvable_injective ϕ_inj, exact is_solvable_of_is_scalar_tower F p.splitting_field q.splitting_field, end section gal_X_pow_sub_C lemma gal_X_pow_sub_one_is_solvable (n : ℕ) : is_solvable (X ^ n - 1 : F[X]).gal := begin by_cases hn : n = 0, { rw [hn, pow_zero, sub_self], exact gal_zero_is_solvable }, have hn' : 0 < n := pos_iff_ne_zero.mpr hn, have hn'' : (X ^ n - 1 : F[X]) ≠ 0 := λ h, one_ne_zero ((leading_coeff_X_pow_sub_one hn').symm.trans (congr_arg leading_coeff h)), apply is_solvable_of_comm, intros σ τ, ext a ha, rw [mem_root_set hn'', alg_hom.map_sub, aeval_X_pow, aeval_one, sub_eq_zero] at ha, have key : ∀ σ : (X ^ n - 1 : F[X]).gal, ∃ m : ℕ, σ a = a ^ m, { intro σ, obtain ⟨m, hm⟩ := map_root_of_unity_eq_pow_self σ.to_alg_hom ⟨is_unit.unit (is_unit_of_pow_eq_one a n ha hn'), by { ext, rwa [units.coe_pow, is_unit.unit_spec, subtype.coe_mk n hn'] }⟩, use m, convert hm }, obtain ⟨c, hc⟩ := key σ, obtain ⟨d, hd⟩ := key τ, rw [σ.mul_apply, τ.mul_apply, hc, τ.map_pow, hd, σ.map_pow, hc, ←pow_mul, pow_mul'], end lemma gal_X_pow_sub_C_is_solvable_aux (n : ℕ) (a : F) (h : (X ^ n - 1 : F[X]).splits (ring_hom.id F)) : is_solvable (X ^ n - C a).gal := begin by_cases ha : a = 0, { rw [ha, C_0, sub_zero], exact gal_X_pow_is_solvable n }, have ha' : algebra_map F (X ^ n - C a).splitting_field a ≠ 0 := mt ((injective_iff_map_eq_zero _).mp (ring_hom.injective _) a) ha, by_cases hn : n = 0, { rw [hn, pow_zero, ←C_1, ←C_sub], exact gal_C_is_solvable (1 - a) }, have hn' : 0 < n := pos_iff_ne_zero.mpr hn, have hn'' : X ^ n - C a ≠ 0 := λ h, one_ne_zero ((leading_coeff_X_pow_sub_C hn').symm.trans (congr_arg leading_coeff h)), have hn''' : (X ^ n - 1 : F[X]) ≠ 0 := λ h, one_ne_zero ((leading_coeff_X_pow_sub_one hn').symm.trans (congr_arg leading_coeff h)), have mem_range : ∀ {c}, c ^ n = 1 → ∃ d, algebra_map F (X ^ n - C a).splitting_field d = c := λ c hc, ring_hom.mem_range.mp (minpoly.mem_range_of_degree_eq_one F c (or.resolve_left h hn''' (minpoly.irreducible ((splitting_field.normal (X ^ n - C a)).is_integral c)) (minpoly.dvd F c (by rwa [map_id, alg_hom.map_sub, sub_eq_zero, aeval_X_pow, aeval_one])))), apply is_solvable_of_comm, intros σ τ, ext b hb, rw [mem_root_set hn'', alg_hom.map_sub, aeval_X_pow, aeval_C, sub_eq_zero] at hb, have hb' : b ≠ 0, { intro hb', rw [hb', zero_pow hn'] at hb, exact ha' hb.symm }, have key : ∀ σ : (X ^ n - C a).gal, ∃ c, σ b = b * algebra_map F _ c, { intro σ, have key : (σ b / b) ^ n = 1 := by rw [div_pow, ←σ.map_pow, hb, σ.commutes, div_self ha'], obtain ⟨c, hc⟩ := mem_range key, use c, rw [hc, mul_div_cancel' (σ b) hb'] }, obtain ⟨c, hc⟩ := key σ, obtain ⟨d, hd⟩ := key τ, rw [σ.mul_apply, τ.mul_apply, hc, τ.map_mul, τ.commutes, hd, σ.map_mul, σ.commutes, hc], rw [mul_assoc, mul_assoc, mul_right_inj' hb', mul_comm], end lemma splits_X_pow_sub_one_of_X_pow_sub_C {F : Type*} [field F] {E : Type*} [field E] (i : F →+* E) (n : ℕ) {a : F} (ha : a ≠ 0) (h : (X ^ n - C a).splits i) : (X ^ n - 1).splits i := begin have ha' : i a ≠ 0 := mt ((injective_iff_map_eq_zero i).mp (i.injective) a) ha, by_cases hn : n = 0, { rw [hn, pow_zero, sub_self], exact splits_zero i }, have hn' : 0 < n := pos_iff_ne_zero.mpr hn, have hn'' : (X ^ n - C a).degree ≠ 0 := ne_of_eq_of_ne (degree_X_pow_sub_C hn' a) (mt with_bot.coe_eq_coe.mp hn), obtain ⟨b, hb⟩ := exists_root_of_splits i h hn'', rw [eval₂_sub, eval₂_X_pow, eval₂_C, sub_eq_zero] at hb, have hb' : b ≠ 0, { intro hb', rw [hb', zero_pow hn'] at hb, exact ha' hb.symm }, let s := ((X ^ n - C a).map i).roots, have hs : _ = _ * (s.map _).prod := eq_prod_roots_of_splits h, rw [leading_coeff_X_pow_sub_C hn', ring_hom.map_one, C_1, one_mul] at hs, have hs' : s.card = n := (nat_degree_eq_card_roots h).symm.trans nat_degree_X_pow_sub_C, apply @splits_of_exists_multiset F E _ _ i (X ^ n - 1) (s.map (λ c : E, c / b)), rw [leading_coeff_X_pow_sub_one hn', ring_hom.map_one, C_1, one_mul, multiset.map_map], have C_mul_C : (C (i a⁻¹)) * (C (i a)) = 1, { rw [←C_mul, ←i.map_mul, inv_mul_cancel ha, i.map_one, C_1] }, have key1 : (X ^ n - 1).map i = C (i a⁻¹) * ((X ^ n - C a).map i).comp (C b * X), { rw [polynomial.map_sub, polynomial.map_sub, polynomial.map_pow, map_X, map_C, polynomial.map_one, sub_comp, pow_comp, X_comp, C_comp, mul_pow, ←C_pow, hb, mul_sub, ←mul_assoc, C_mul_C, one_mul] }, have key2 : (λ q : E[X], q.comp (C b * X)) ∘ (λ c : E, X - C c) = (λ c : E, C b * (X - C (c / b))), { ext1 c, change (X - C c).comp (C b * X) = C b * (X - C (c / b)), rw [sub_comp, X_comp, C_comp, mul_sub, ←C_mul, mul_div_cancel' c hb'] }, rw [key1, hs, multiset_prod_comp, multiset.map_map, key2, multiset.prod_map_mul, multiset.map_const, multiset.prod_repeat, hs', ←C_pow, hb, ←mul_assoc, C_mul_C, one_mul], all_goals { exact field.to_nontrivial F }, end lemma gal_X_pow_sub_C_is_solvable (n : ℕ) (x : F) : is_solvable (X ^ n - C x).gal := begin by_cases hx : x = 0, { rw [hx, C_0, sub_zero], exact gal_X_pow_is_solvable n }, apply gal_is_solvable_tower (X ^ n - 1) (X ^ n - C x), { exact splits_X_pow_sub_one_of_X_pow_sub_C _ n hx (splitting_field.splits _) }, { exact gal_X_pow_sub_one_is_solvable n }, { rw [polynomial.map_sub, polynomial.map_pow, map_X, map_C], apply gal_X_pow_sub_C_is_solvable_aux, have key := splitting_field.splits (X ^ n - 1 : F[X]), rwa [←splits_id_iff_splits, polynomial.map_sub, polynomial.map_pow, map_X, polynomial.map_one] at key } end end gal_X_pow_sub_C variables (F) /-- Inductive definition of solvable by radicals -/ inductive is_solvable_by_rad : E → Prop | base (a : F) : is_solvable_by_rad (algebra_map F E a) | add (a b : E) : is_solvable_by_rad a → is_solvable_by_rad b → is_solvable_by_rad (a + b) | neg (α : E) : is_solvable_by_rad α → is_solvable_by_rad (-α) | mul (α β : E) : is_solvable_by_rad α → is_solvable_by_rad β → is_solvable_by_rad (α * β) | inv (α : E) : is_solvable_by_rad α → is_solvable_by_rad α⁻¹ | rad (α : E) (n : ℕ) (hn : n ≠ 0) : is_solvable_by_rad (α^n) → is_solvable_by_rad α variables (E) /-- The intermediate field of solvable-by-radicals elements -/ def solvable_by_rad : intermediate_field F E := { carrier := is_solvable_by_rad F, zero_mem' := by { convert is_solvable_by_rad.base (0 : F), rw ring_hom.map_zero }, add_mem' := is_solvable_by_rad.add, neg_mem' := is_solvable_by_rad.neg, one_mem' := by { convert is_solvable_by_rad.base (1 : F), rw ring_hom.map_one }, mul_mem' := is_solvable_by_rad.mul, inv_mem' := is_solvable_by_rad.inv, algebra_map_mem' := is_solvable_by_rad.base } namespace solvable_by_rad variables {F} {E} {α : E} lemma induction (P : solvable_by_rad F E → Prop) (base : ∀ α : F, P (algebra_map F (solvable_by_rad F E) α)) (add : ∀ α β : solvable_by_rad F E, P α → P β → P (α + β)) (neg : ∀ α : solvable_by_rad F E, P α → P (-α)) (mul : ∀ α β : solvable_by_rad F E, P α → P β → P (α * β)) (inv : ∀ α : solvable_by_rad F E, P α → P α⁻¹) (rad : ∀ α : solvable_by_rad F E, ∀ n : ℕ, n ≠ 0 → P (α^n) → P α) (α : solvable_by_rad F E) : P α := begin revert α, suffices : ∀ (α : E), is_solvable_by_rad F α → (∃ β : solvable_by_rad F E, ↑β = α ∧ P β), { intro α, obtain ⟨α₀, hα₀, Pα⟩ := this α (subtype.mem α), convert Pα, exact subtype.ext hα₀.symm }, apply is_solvable_by_rad.rec, { exact λ α, ⟨algebra_map F (solvable_by_rad F E) α, rfl, base α⟩ }, { intros α β hα hβ Pα Pβ, obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩, exact ⟨α₀ + β₀, by {rw [←hα₀, ←hβ₀], refl }, add α₀ β₀ Pα Pβ⟩ }, { intros α hα Pα, obtain ⟨α₀, hα₀, Pα⟩ := Pα, exact ⟨-α₀, by {rw ←hα₀, refl }, neg α₀ Pα⟩ }, { intros α β hα hβ Pα Pβ, obtain ⟨⟨α₀, hα₀, Pα⟩, β₀, hβ₀, Pβ⟩ := ⟨Pα, Pβ⟩, exact ⟨α₀ * β₀, by {rw [←hα₀, ←hβ₀], refl }, mul α₀ β₀ Pα Pβ⟩ }, { intros α hα Pα, obtain ⟨α₀, hα₀, Pα⟩ := Pα, exact ⟨α₀⁻¹, by {rw ←hα₀, refl }, inv α₀ Pα⟩ }, { intros α n hn hα Pα, obtain ⟨α₀, hα₀, Pα⟩ := Pα, refine ⟨⟨α, is_solvable_by_rad.rad α n hn hα⟩, rfl, rad _ n hn _⟩, convert Pα, exact subtype.ext (eq.trans ((solvable_by_rad F E).coe_pow _ n) hα₀.symm) } end theorem is_integral (α : solvable_by_rad F E) : is_integral F α := begin revert α, apply solvable_by_rad.induction, { exact λ _, is_integral_algebra_map }, { exact λ _ _, is_integral_add }, { exact λ _, is_integral_neg }, { exact λ _ _, is_integral_mul }, { exact λ α hα, subalgebra.inv_mem_of_algebraic (integral_closure F (solvable_by_rad F E)) (show is_algebraic F ↑(⟨α, hα⟩ : integral_closure F (solvable_by_rad F E)), by exact is_algebraic_iff_is_integral.mpr hα) }, { intros α n hn hα, obtain ⟨p, h1, h2⟩ := is_algebraic_iff_is_integral.mpr hα, refine is_algebraic_iff_is_integral.mp ⟨p.comp (X ^ n), ⟨λ h, h1 (leading_coeff_eq_zero.mp _), by rw [aeval_comp, aeval_X_pow, h2]⟩⟩, rwa [←leading_coeff_eq_zero, leading_coeff_comp, leading_coeff_X_pow, one_pow, mul_one] at h, rwa nat_degree_X_pow } end /-- The statement to be proved inductively -/ def P (α : solvable_by_rad F E) : Prop := is_solvable (minpoly F α).gal /-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ lemma induction3 {α : solvable_by_rad F E} {n : ℕ} (hn : n ≠ 0) (hα : P (α ^ n)) : P α := begin let p := minpoly F (α ^ n), have hp : p.comp (X ^ n) ≠ 0, { intro h, cases (comp_eq_zero_iff.mp h) with h' h', { exact minpoly.ne_zero (is_integral (α ^ n)) h' }, { exact hn (by rw [←nat_degree_C _, ←h'.2, nat_degree_X_pow]) } }, apply gal_is_solvable_of_splits, { exact ⟨splits_of_splits_of_dvd _ hp (splitting_field.splits (p.comp (X ^ n))) (minpoly.dvd F α (by rw [aeval_comp, aeval_X_pow, minpoly.aeval]))⟩ }, { refine gal_is_solvable_tower p (p.comp (X ^ n)) _ hα _, { exact gal.splits_in_splitting_field_of_comp _ _ (by rwa [nat_degree_X_pow]) }, { obtain ⟨s, hs⟩ := (splits_iff_exists_multiset _).1 (splitting_field.splits p), rw [map_comp, polynomial.map_pow, map_X, hs, mul_comp, C_comp], apply gal_mul_is_solvable (gal_C_is_solvable _), rw multiset_prod_comp, apply gal_prod_is_solvable, intros q hq, rw multiset.mem_map at hq, obtain ⟨q, hq, rfl⟩ := hq, rw multiset.mem_map at hq, obtain ⟨q, hq, rfl⟩ := hq, rw [sub_comp, X_comp, C_comp], exact gal_X_pow_sub_C_is_solvable n q } }, end /-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ lemma induction2 {α β γ : solvable_by_rad F E} (hγ : γ ∈ F⟮α, β⟯) (hα : P α) (hβ : P β) : P γ := begin let p := (minpoly F α), let q := (minpoly F β), have hpq := polynomial.splits_of_splits_mul _ (mul_ne_zero (minpoly.ne_zero (is_integral α)) (minpoly.ne_zero (is_integral β))) (splitting_field.splits (p * q)), let f : F⟮α, β⟯ →ₐ[F] (p * q).splitting_field := classical.choice (alg_hom_mk_adjoin_splits begin intros x hx, cases hx, rw hx, exact ⟨is_integral α, hpq.1⟩, cases hx, exact ⟨is_integral β, hpq.2⟩, end), have key : minpoly F γ = minpoly F (f ⟨γ, hγ⟩) := minpoly.eq_of_irreducible_of_monic (minpoly.irreducible (is_integral γ)) begin suffices : aeval (⟨γ, hγ⟩ : F ⟮α, β⟯) (minpoly F γ) = 0, { rw [aeval_alg_hom_apply, this, alg_hom.map_zero] }, apply (algebra_map F⟮α, β⟯ (solvable_by_rad F E)).injective, rw [ring_hom.map_zero, is_scalar_tower.algebra_map_aeval], exact minpoly.aeval F γ, end (minpoly.monic (is_integral γ)), rw [P, key], exact gal_is_solvable_of_splits ⟨normal.splits (splitting_field.normal _) _⟩ (gal_mul_is_solvable hα hβ), end /-- An auxiliary induction lemma, which is generalized by `solvable_by_rad.is_solvable`. -/ lemma induction1 {α β : solvable_by_rad F E} (hβ : β ∈ F⟮α⟯) (hα : P α) : P β := induction2 (adjoin.mono F _ _ (ge_of_eq (set.pair_eq_singleton α)) hβ) hα hα theorem is_solvable (α : solvable_by_rad F E) : is_solvable (minpoly F α).gal := begin revert α, apply solvable_by_rad.induction, { exact λ α, by { rw minpoly.eq_X_sub_C, exact gal_X_sub_C_is_solvable α } }, { exact λ α β, induction2 (add_mem (subset_adjoin F _ (set.mem_insert α _)) (subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) }, { exact λ α, induction1 (neg_mem (mem_adjoin_simple_self F α)) }, { exact λ α β, induction2 (mul_mem (subset_adjoin F _ (set.mem_insert α _)) (subset_adjoin F _ (set.mem_insert_of_mem α (set.mem_singleton β)))) }, { exact λ α, induction1 (inv_mem (mem_adjoin_simple_self F α)) }, { exact λ α n, induction3 }, end /-- **Abel-Ruffini Theorem** (one direction): An irreducible polynomial with an `is_solvable_by_rad` root has solvable Galois group -/ lemma is_solvable' {α : E} {q : F[X]} (q_irred : irreducible q) (q_aeval : aeval α q = 0) (hα : is_solvable_by_rad F α) : _root_.is_solvable q.gal := begin haveI : _root_.is_solvable (q * C q.leading_coeff⁻¹).gal, { rw [minpoly.eq_of_irreducible q_irred q_aeval, ←show minpoly F (⟨α, hα⟩ : solvable_by_rad F E) = minpoly F α, from minpoly.eq_of_algebra_map_eq (ring_hom.injective _) (is_integral ⟨α, hα⟩) rfl], exact is_solvable ⟨α, hα⟩ }, refine solvable_of_surjective (gal.restrict_dvd_surjective ⟨C q.leading_coeff⁻¹, rfl⟩ _), rw [mul_ne_zero_iff, ne, ne, C_eq_zero, inv_eq_zero], exact ⟨q_irred.ne_zero, leading_coeff_ne_zero.mpr q_irred.ne_zero⟩, end end solvable_by_rad end abel_ruffini