Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
49.1 kB
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Andrew Zipperer, Haitao Zhang, Minchao Wu, Yury Kudryashov
-/
import data.set.prod
import logic.function.conjugate
/-!
# Functions over sets
## Main definitions
### Predicate
* `set.eq_on f₁ f₂ s` : functions `f₁` and `f₂` are equal at every point of `s`;
* `set.maps_to f s t` : `f` sends every point of `s` to a point of `t`;
* `set.inj_on f s` : restriction of `f` to `s` is injective;
* `set.surj_on f s t` : every point in `s` has a preimage in `s`;
* `set.bij_on f s t` : `f` is a bijection between `s` and `t`;
* `set.left_inv_on f' f s` : for every `x ∈ s` we have `f' (f x) = x`;
* `set.right_inv_on f' f t` : for every `y ∈ t` we have `f (f' y) = y`;
* `set.inv_on f' f s t` : `f'` is a two-side inverse of `f` on `s` and `t`, i.e.
we have `set.left_inv_on f' f s` and `set.right_inv_on f' f t`.
### Functions
* `set.restrict f s` : restrict the domain of `f` to the set `s`;
* `set.cod_restrict f s h` : given `h : ∀ x, f x ∈ s`, restrict the codomain of `f` to the set `s`;
* `set.maps_to.restrict f s t h`: given `h : maps_to f s t`, restrict the domain of `f` to `s`
and the codomain to `t`.
-/
universes u v w x y
variables {α : Type u} {β : Type v} {π : α → Type v} {γ : Type w} {ι : Sort x}
open function
namespace set
/-! ### Restrict -/
/-- Restrict domain of a function `f` to a set `s`. Same as `subtype.restrict` but this version
takes an argument `↥s` instead of `subtype s`. -/
def restrict (s : set α) (f : Π a : α, π a) : Π a : s, π a := λ x, f x
lemma restrict_eq (f : α → β) (s : set α) : s.restrict f = f ∘ coe := rfl
@[simp] lemma restrict_apply (f : α → β) (s : set α) (x : s) : s.restrict f x = f x := rfl
lemma restrict_eq_iff {f : Π a, π a} {s : set α} {g : Π a : s, π a} :
restrict s f = g ↔ ∀ a (ha : a ∈ s), f a = g ⟨a, ha⟩ :=
funext_iff.trans subtype.forall
lemma eq_restrict_iff {s : set α} {f : Π a : s, π a} {g : Π a, π a} :
f = restrict s g ↔ ∀ a (ha : a ∈ s), f ⟨a, ha⟩ = g a :=
funext_iff.trans subtype.forall
@[simp] lemma range_restrict (f : α → β) (s : set α) : set.range (s.restrict f) = f '' s :=
(range_comp _ _).trans $ congr_arg (('') f) subtype.range_coe
lemma image_restrict (f : α → β) (s t : set α) : s.restrict f '' (coe ⁻¹' t) = f '' (t ∩ s) :=
by rw [restrict, image_comp, image_preimage_eq_inter_range, subtype.range_coe]
@[simp] lemma restrict_dite {s : set α} [∀ x, decidable (x ∈ s)] (f : Π a ∈ s, β) (g : Π a ∉ s, β) :
s.restrict (λ a, if h : a ∈ s then f a h else g a h) = λ a, f a a.2 :=
funext $ λ a, dif_pos a.2
@[simp] lemma restrict_dite_compl {s : set α} [∀ x, decidable (x ∈ s)] (f : Π a ∈ s, β)
(g : Π a ∉ s, β) :
sᶜ.restrict (λ a, if h : a ∈ s then f a h else g a h) = λ a, g a a.2 :=
funext $ λ a, dif_neg a.2
@[simp] lemma restrict_ite (f g : α → β) (s : set α) [∀ x, decidable (x ∈ s)] :
s.restrict (λ a, if a ∈ s then f a else g a) = s.restrict f :=
restrict_dite _ _
@[simp] lemma restrict_ite_compl (f g : α → β) (s : set α) [∀ x, decidable (x ∈ s)] :
sᶜ.restrict (λ a, if a ∈ s then f a else g a) = sᶜ.restrict g :=
restrict_dite_compl _ _
@[simp] lemma restrict_piecewise (f g : α → β) (s : set α) [∀ x, decidable (x ∈ s)] :
s.restrict (piecewise s f g) = s.restrict f :=
restrict_ite _ _ _
@[simp] lemma restrict_piecewise_compl (f g : α → β) (s : set α) [∀ x, decidable (x ∈ s)] :
sᶜ.restrict (piecewise s f g) = sᶜ.restrict g :=
restrict_ite_compl _ _ _
lemma restrict_extend_range (f : α → β) (g : α → γ) (g' : β → γ) :
(range f).restrict (extend f g g') = λ x, g x.coe_prop.some :=
by convert restrict_dite _ _
@[simp] lemma restrict_extend_compl_range (f : α → β) (g : α → γ) (g' : β → γ) :
(range f)ᶜ.restrict (extend f g g') = g' ∘ coe :=
by convert restrict_dite_compl _ _
lemma range_extend_subset (f : α → β) (g : α → γ) (g' : β → γ) :
range (extend f g g') ⊆ range g ∪ g' '' (range f)ᶜ :=
begin
classical,
rintro _ ⟨y, rfl⟩,
rw extend_def, split_ifs,
exacts [or.inl (mem_range_self _), or.inr (mem_image_of_mem _ h)]
end
lemma range_extend {f : α → β} (hf : injective f) (g : α → γ) (g' : β → γ) :
range (extend f g g') = range g ∪ g' '' (range f)ᶜ :=
begin
refine (range_extend_subset _ _ _).antisymm _,
rintro z (⟨x, rfl⟩|⟨y, hy, rfl⟩),
exacts [⟨f x, extend_apply hf _ _ _⟩, ⟨y, extend_apply' _ _ _ hy⟩]
end
/-- Restrict codomain of a function `f` to a set `s`. Same as `subtype.coind` but this version
has codomain `↥s` instead of `subtype s`. -/
def cod_restrict (f : ι → α) (s : set α) (h : ∀ x, f x ∈ s) : ι → s :=
λ x, ⟨f x, h x⟩
@[simp] lemma coe_cod_restrict_apply (f : ι → α) (s : set α) (h : ∀ x, f x ∈ s) (x : ι) :
(cod_restrict f s h x : α) = f x :=
rfl
@[simp] lemma restrict_comp_cod_restrict {f : ι → α} {g : α → β} {b : set α}
(h : ∀ x, f x ∈ b) : (b.restrict g) ∘ (b.cod_restrict f h) = g ∘ f := rfl
@[simp] lemma injective_cod_restrict {f : ι → α} {s : set α} (h : ∀ x, f x ∈ s) :
injective (cod_restrict f s h) ↔ injective f :=
by simp only [injective, subtype.ext_iff, coe_cod_restrict_apply]
alias injective_cod_restrict ↔ _ _root_.function.injective.cod_restrict
variables {s s₁ s₂ : set α} {t t₁ t₂ : set β} {p : set γ} {f f₁ f₂ f₃ : α → β} {g g₁ g₂ : β → γ}
{f' f₁' f₂' : β → α} {g' : γ → β}
/-! ### Equality on a set -/
/-- Two functions `f₁ f₂ : α → β` are equal on `s`
if `f₁ x = f₂ x` for all `x ∈ a`. -/
def eq_on (f₁ f₂ : α → β) (s : set α) : Prop :=
∀ ⦃x⦄, x ∈ s → f₁ x = f₂ x
@[simp] lemma eq_on_empty (f₁ f₂ : α → β) : eq_on f₁ f₂ ∅ := λ x, false.elim
@[simp] lemma restrict_eq_restrict_iff : restrict s f₁ = restrict s f₂ ↔ eq_on f₁ f₂ s :=
restrict_eq_iff
@[symm] lemma eq_on.symm (h : eq_on f₁ f₂ s) : eq_on f₂ f₁ s :=
λ x hx, (h hx).symm
lemma eq_on_comm : eq_on f₁ f₂ s ↔ eq_on f₂ f₁ s :=
⟨eq_on.symm, eq_on.symm⟩
@[refl] lemma eq_on_refl (f : α → β) (s : set α) : eq_on f f s :=
λ _ _, rfl
@[trans] lemma eq_on.trans (h₁ : eq_on f₁ f₂ s) (h₂ : eq_on f₂ f₃ s) : eq_on f₁ f₃ s :=
λ x hx, (h₁ hx).trans (h₂ hx)
theorem eq_on.image_eq (heq : eq_on f₁ f₂ s) : f₁ '' s = f₂ '' s :=
image_congr heq
theorem eq_on.inter_preimage_eq (heq : eq_on f₁ f₂ s) (t : set β) : s ∩ f₁ ⁻¹' t = s ∩ f₂ ⁻¹' t :=
ext $ λ x, and.congr_right_iff.2 $ λ hx, by rw [mem_preimage, mem_preimage, heq hx]
lemma eq_on.mono (hs : s₁ ⊆ s₂) (hf : eq_on f₁ f₂ s₂) : eq_on f₁ f₂ s₁ :=
λ x hx, hf (hs hx)
lemma eq_on.comp_left (h : s.eq_on f₁ f₂) : s.eq_on (g ∘ f₁) (g ∘ f₂) := λ a ha, congr_arg _ $ h ha
lemma comp_eq_of_eq_on_range {ι : Sort*} {f : ι → α} {g₁ g₂ : α → β} (h : eq_on g₁ g₂ (range f)) :
g₁ ∘ f = g₂ ∘ f :=
funext $ λ x, h $ mem_range_self _
/-! ### Congruence lemmas -/
section order
variables [preorder α] [preorder β]
lemma _root_.monotone_on.congr (h₁ : monotone_on f₁ s) (h : s.eq_on f₁ f₂) : monotone_on f₂ s :=
begin
intros a ha b hb hab,
rw [←h ha, ←h hb],
exact h₁ ha hb hab,
end
lemma _root_.antitone_on.congr (h₁ : antitone_on f₁ s) (h : s.eq_on f₁ f₂) : antitone_on f₂ s :=
h₁.dual_right.congr h
lemma _root_.strict_mono_on.congr (h₁ : strict_mono_on f₁ s) (h : s.eq_on f₁ f₂) :
strict_mono_on f₂ s :=
begin
intros a ha b hb hab,
rw [←h ha, ←h hb],
exact h₁ ha hb hab,
end
lemma _root_.strict_anti_on.congr (h₁ : strict_anti_on f₁ s) (h : s.eq_on f₁ f₂) :
strict_anti_on f₂ s :=
h₁.dual_right.congr h
lemma eq_on.congr_monotone_on (h : s.eq_on f₁ f₂) : monotone_on f₁ s ↔ monotone_on f₂ s :=
⟨λ h₁, h₁.congr h, λ h₂, h₂.congr h.symm⟩
lemma eq_on.congr_antitone_on (h : s.eq_on f₁ f₂) : antitone_on f₁ s ↔ antitone_on f₂ s :=
⟨λ h₁, h₁.congr h, λ h₂, h₂.congr h.symm⟩
lemma eq_on.congr_strict_mono_on (h : s.eq_on f₁ f₂) : strict_mono_on f₁ s ↔ strict_mono_on f₂ s :=
⟨λ h₁, h₁.congr h, λ h₂, h₂.congr h.symm⟩
lemma eq_on.congr_strict_anti_on (h : s.eq_on f₁ f₂) : strict_anti_on f₁ s ↔ strict_anti_on f₂ s :=
⟨λ h₁, h₁.congr h, λ h₂, h₂.congr h.symm⟩
end order
/-! ### Mono lemmas-/
section mono
variables [preorder α] [preorder β]
lemma _root_.monotone_on.mono (h : monotone_on f s) (h' : s₂ ⊆ s) : monotone_on f s₂ :=
λ x hx y hy, h (h' hx) (h' hy)
lemma _root_.antitone_on.mono (h : antitone_on f s) (h' : s₂ ⊆ s) : antitone_on f s₂ :=
λ x hx y hy, h (h' hx) (h' hy)
lemma _root_.strict_mono_on.mono (h : strict_mono_on f s) (h' : s₂ ⊆ s) : strict_mono_on f s₂ :=
λ x hx y hy, h (h' hx) (h' hy)
lemma _root_.strict_anti_on.mono (h : strict_anti_on f s) (h' : s₂ ⊆ s) : strict_anti_on f s₂ :=
λ x hx y hy, h (h' hx) (h' hy)
protected lemma _root_.monotone_on.monotone (h : monotone_on f s) : monotone (f ∘ coe : s → β) :=
λ x y hle, h x.coe_prop y.coe_prop hle
protected lemma _root_.antitone_on.monotone (h : antitone_on f s) : antitone (f ∘ coe : s → β) :=
λ x y hle, h x.coe_prop y.coe_prop hle
protected lemma _root_.strict_mono_on.strict_mono (h : strict_mono_on f s) :
strict_mono (f ∘ coe : s → β) :=
λ x y hlt, h x.coe_prop y.coe_prop hlt
protected lemma _root_.strict_anti_on.strict_anti (h : strict_anti_on f s) :
strict_anti (f ∘ coe : s → β) :=
λ x y hlt, h x.coe_prop y.coe_prop hlt
end mono
/-! ### maps to -/
/-- `maps_to f a b` means that the image of `a` is contained in `b`. -/
def maps_to (f : α → β) (s : set α) (t : set β) : Prop := ∀ ⦃x⦄, x ∈ s → f x ∈ t
/-- Given a map `f` sending `s : set α` into `t : set β`, restrict domain of `f` to `s`
and the codomain to `t`. Same as `subtype.map`. -/
def maps_to.restrict (f : α → β) (s : set α) (t : set β) (h : maps_to f s t) :
s → t :=
subtype.map f h
@[simp] lemma maps_to.coe_restrict_apply (h : maps_to f s t) (x : s) :
(h.restrict f s t x : β) = f x := rfl
lemma maps_to.coe_restrict (h : set.maps_to f s t) :
coe ∘ h.restrict f s t = s.restrict f := rfl
lemma maps_to.range_restrict (f : α → β) (s : set α) (t : set β) (h : maps_to f s t) :
range (h.restrict f s t) = coe ⁻¹' (f '' s) :=
set.range_subtype_map f h
lemma maps_to_iff_exists_map_subtype : maps_to f s t ↔ ∃ g : s → t, ∀ x : s, f x = g x :=
⟨λ h, ⟨h.restrict f s t, λ _, rfl⟩,
λ ⟨g, hg⟩ x hx, by { erw [hg ⟨x, hx⟩], apply subtype.coe_prop }⟩
theorem maps_to' : maps_to f s t ↔ f '' s ⊆ t :=
image_subset_iff.symm
@[simp] theorem maps_to_singleton {x : α} : maps_to f {x} t ↔ f x ∈ t := singleton_subset_iff
theorem maps_to_empty (f : α → β) (t : set β) : maps_to f ∅ t := empty_subset _
theorem maps_to.image_subset (h : maps_to f s t) : f '' s ⊆ t :=
maps_to'.1 h
theorem maps_to.congr (h₁ : maps_to f₁ s t) (h : eq_on f₁ f₂ s) :
maps_to f₂ s t :=
λ x hx, h hx ▸ h₁ hx
lemma eq_on.comp_right (hg : t.eq_on g₁ g₂) (hf : s.maps_to f t) : s.eq_on (g₁ ∘ f) (g₂ ∘ f) :=
λ a ha, hg $ hf ha
theorem eq_on.maps_to_iff (H : eq_on f₁ f₂ s) : maps_to f₁ s t ↔ maps_to f₂ s t :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
theorem maps_to.comp (h₁ : maps_to g t p) (h₂ : maps_to f s t) : maps_to (g ∘ f) s p :=
λ x h, h₁ (h₂ h)
theorem maps_to_id (s : set α) : maps_to id s s := λ x, id
theorem maps_to.iterate {f : α → α} {s : set α} (h : maps_to f s s) :
∀ n, maps_to (f^[n]) s s
| 0 := λ _, id
| (n+1) := (maps_to.iterate n).comp h
theorem maps_to.iterate_restrict {f : α → α} {s : set α} (h : maps_to f s s) (n : ℕ) :
(h.restrict f s s^[n]) = (h.iterate n).restrict _ _ _ :=
begin
funext x,
rw [subtype.ext_iff, maps_to.coe_restrict_apply],
induction n with n ihn generalizing x,
{ refl },
{ simp [nat.iterate, ihn] }
end
theorem maps_to.mono (hf : maps_to f s₁ t₁) (hs : s₂ ⊆ s₁) (ht : t₁ ⊆ t₂) :
maps_to f s₂ t₂ :=
λ x hx, ht (hf $ hs hx)
theorem maps_to.mono_left (hf : maps_to f s₁ t) (hs : s₂ ⊆ s₁) : maps_to f s₂ t :=
λ x hx, hf (hs hx)
theorem maps_to.mono_right (hf : maps_to f s t₁) (ht : t₁ ⊆ t₂) : maps_to f s t₂ :=
λ x hx, ht (hf hx)
theorem maps_to.union_union (h₁ : maps_to f s₁ t₁) (h₂ : maps_to f s₂ t₂) :
maps_to f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
λ x hx, hx.elim (λ hx, or.inl $ h₁ hx) (λ hx, or.inr $ h₂ hx)
theorem maps_to.union (h₁ : maps_to f s₁ t) (h₂ : maps_to f s₂ t) :
maps_to f (s₁ ∪ s₂) t :=
union_self t ▸ h₁.union_union h₂
@[simp] theorem maps_to_union : maps_to f (s₁ ∪ s₂) t ↔ maps_to f s₁ t ∧ maps_to f s₂ t :=
⟨λ h, ⟨h.mono (subset_union_left s₁ s₂) (subset.refl t),
h.mono (subset_union_right s₁ s₂) (subset.refl t)⟩, λ h, h.1.union h.2
theorem maps_to.inter (h₁ : maps_to f s t₁) (h₂ : maps_to f s t₂) :
maps_to f s (t₁ ∩ t₂) :=
λ x hx, ⟨h₁ hx, h₂ hx⟩
theorem maps_to.inter_inter (h₁ : maps_to f s₁ t₁) (h₂ : maps_to f s₂ t₂) :
maps_to f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
λ x hx, ⟨h₁ hx.1, h₂ hx.2
@[simp] theorem maps_to_inter : maps_to f s (t₁ ∩ t₂) ↔ maps_to f s t₁ ∧ maps_to f s t₂ :=
⟨λ h, ⟨h.mono (subset.refl s) (inter_subset_left t₁ t₂),
h.mono (subset.refl s) (inter_subset_right t₁ t₂)⟩, λ h, h.1.inter h.2
theorem maps_to_univ (f : α → β) (s : set α) : maps_to f s univ := λ x h, trivial
theorem maps_to_image (f : α → β) (s : set α) : maps_to f s (f '' s) := by rw maps_to'
theorem maps_to_preimage (f : α → β) (t : set β) : maps_to f (f ⁻¹' t) t := subset.refl _
theorem maps_to_range (f : α → β) (s : set α) : maps_to f s (range f) :=
(maps_to_image f s).mono (subset.refl s) (image_subset_range _ _)
@[simp] lemma maps_image_to (f : α → β) (g : γ → α) (s : set γ) (t : set β) :
maps_to f (g '' s) t ↔ maps_to (f ∘ g) s t :=
⟨λ h c hc, h ⟨c, hc, rfl⟩, λ h d ⟨c, hc⟩, hc.2 ▸ h hc.1
@[simp] lemma maps_univ_to (f : α → β) (s : set β) :
maps_to f univ s ↔ ∀ a, f a ∈ s :=
⟨λ h a, h (mem_univ _), λ h x _, h x⟩
@[simp] lemma maps_range_to (f : α → β) (g : γ → α) (s : set β) :
maps_to f (range g) s ↔ maps_to (f ∘ g) univ s :=
by rw [←image_univ, maps_image_to]
theorem surjective_maps_to_image_restrict (f : α → β) (s : set α) :
surjective ((maps_to_image f s).restrict f s (f '' s)) :=
λ ⟨y, x, hs, hxy⟩, ⟨⟨x, hs⟩, subtype.ext hxy⟩
theorem maps_to.mem_iff (h : maps_to f s t) (hc : maps_to f sᶜ tᶜ) {x} : f x ∈ t ↔ x ∈ s :=
⟨λ ht, by_contra $ λ hs, hc hs ht, λ hx, h hx⟩
/-! ### Restriction onto preimage -/
section
variables (t f)
/-- The restriction of a function onto the preimage of a set. -/
@[simps] def restrict_preimage : f ⁻¹' t → t :=
(set.maps_to_preimage f t).restrict _ _ _
lemma range_restrict_preimage :
range (t.restrict_preimage f) = coe ⁻¹' (range f) :=
begin
delta set.restrict_preimage,
rw [maps_to.range_restrict, set.image_preimage_eq_inter_range,
set.preimage_inter, subtype.coe_preimage_self, set.univ_inter],
end
end
/-! ### Injectivity on a set -/
/-- `f` is injective on `a` if the restriction of `f` to `a` is injective. -/
def inj_on (f : α → β) (s : set α) : Prop :=
∀ ⦃x₁ : α⦄, x₁ ∈ s → ∀ ⦃x₂ : α⦄, x₂ ∈ s → f x₁ = f x₂ → x₁ = x₂
theorem subsingleton.inj_on (hs : s.subsingleton) (f : α → β) : inj_on f s :=
λ x hx y hy h, hs hx hy
@[simp] theorem inj_on_empty (f : α → β) : inj_on f ∅ :=
subsingleton_empty.inj_on f
@[simp] theorem inj_on_singleton (f : α → β) (a : α) : inj_on f {a} :=
subsingleton_singleton.inj_on f
theorem inj_on.eq_iff {x y} (h : inj_on f s) (hx : x ∈ s) (hy : y ∈ s) :
f x = f y ↔ x = y :=
⟨h hx hy, λ h, h ▸ rfl⟩
theorem inj_on.congr (h₁ : inj_on f₁ s) (h : eq_on f₁ f₂ s) :
inj_on f₂ s :=
λ x hx y hy, h hx ▸ h hy ▸ h₁ hx hy
theorem eq_on.inj_on_iff (H : eq_on f₁ f₂ s) : inj_on f₁ s ↔ inj_on f₂ s :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
theorem inj_on.mono (h : s₁ ⊆ s₂) (ht : inj_on f s₂) : inj_on f s₁ :=
λ x hx y hy H, ht (h hx) (h hy) H
theorem inj_on_union (h : disjoint s₁ s₂) :
inj_on f (s₁ ∪ s₂) ↔ inj_on f s₁ ∧ inj_on f s₂ ∧ ∀ (x ∈ s₁) (y ∈ s₂), f x ≠ f y :=
begin
refine ⟨λ H, ⟨H.mono $ subset_union_left _ _, H.mono $ subset_union_right _ _, _⟩, _⟩,
{ intros x hx y hy hxy,
obtain rfl : x = y, from H (or.inl hx) (or.inr hy) hxy,
exact h ⟨hx, hy⟩ },
{ rintro ⟨h₁, h₂, h₁₂⟩,
rintro x (hx|hx) y (hy|hy) hxy,
exacts [h₁ hx hy hxy, (h₁₂ _ hx _ hy hxy).elim, (h₁₂ _ hy _ hx hxy.symm).elim, h₂ hx hy hxy] }
end
theorem inj_on_insert {f : α → β} {s : set α} {a : α} (has : a ∉ s) :
set.inj_on f (insert a s) ↔ set.inj_on f s ∧ f a ∉ f '' s :=
have disjoint s {a}, from λ x ⟨hxs, (hxa : x = a)⟩, has (hxa ▸ hxs),
by { rw [← union_singleton, inj_on_union this], simp }
lemma injective_iff_inj_on_univ : injective f ↔ inj_on f univ :=
⟨λ h x hx y hy hxy, h hxy, λ h _ _ heq, h trivial trivial heq⟩
lemma inj_on_of_injective (h : injective f) (s : set α) : inj_on f s :=
λ x hx y hy hxy, h hxy
alias inj_on_of_injective ← _root_.function.injective.inj_on
theorem inj_on.comp (hg : inj_on g t) (hf: inj_on f s) (h : maps_to f s t) :
inj_on (g ∘ f) s :=
λ x hx y hy heq, hf hx hy $ hg (h hx) (h hy) heq
lemma inj_on_iff_injective : inj_on f s ↔ injective (s.restrict f) :=
⟨λ H a b h, subtype.eq $ H a.2 b.2 h,
λ H a as b bs h, congr_arg subtype.val $ @H ⟨a, as⟩ ⟨b, bs⟩ h⟩
alias inj_on_iff_injective ↔ inj_on.injective _
lemma exists_inj_on_iff_injective [nonempty β] :
(∃ f : α → β, inj_on f s) ↔ ∃ f : s → β, injective f :=
⟨λ ⟨f, hf⟩, ⟨_, hf.injective⟩,
λ ⟨f, hf⟩, by { lift f to α → β using trivial, exact ⟨f, inj_on_iff_injective.2 hf⟩ }⟩
lemma inj_on_preimage {B : set (set β)} (hB : B ⊆ 𝒫 (range f)) :
inj_on (preimage f) B :=
λ s hs t ht hst, (preimage_eq_preimage' (hB hs) (hB ht)).1 hst
lemma inj_on.mem_of_mem_image {x} (hf : inj_on f s) (hs : s₁ ⊆ s) (h : x ∈ s) (h₁ : f x ∈ f '' s₁) :
x ∈ s₁ :=
let ⟨x', h', eq⟩ := h₁ in hf (hs h') h eq ▸ h'
lemma inj_on.mem_image_iff {x} (hf : inj_on f s) (hs : s₁ ⊆ s) (hx : x ∈ s) :
f x ∈ f '' s₁ ↔ x ∈ s₁ :=
⟨hf.mem_of_mem_image hs hx, mem_image_of_mem f⟩
lemma inj_on.preimage_image_inter (hf : inj_on f s) (hs : s₁ ⊆ s) :
f ⁻¹' (f '' s₁) ∩ s = s₁ :=
ext $ λ x, ⟨λ ⟨h₁, h₂⟩, hf.mem_of_mem_image hs h₂ h₁, λ h, ⟨mem_image_of_mem _ h, hs h⟩⟩
lemma eq_on.cancel_left (h : s.eq_on (g ∘ f₁) (g ∘ f₂)) (hg : t.inj_on g) (hf₁ : s.maps_to f₁ t)
(hf₂ : s.maps_to f₂ t) :
s.eq_on f₁ f₂ :=
λ a ha, hg (hf₁ ha) (hf₂ ha) (h ha)
lemma inj_on.cancel_left (hg : t.inj_on g) (hf₁ : s.maps_to f₁ t) (hf₂ : s.maps_to f₂ t) :
s.eq_on (g ∘ f₁) (g ∘ f₂) ↔ s.eq_on f₁ f₂ :=
⟨λ h, h.cancel_left hg hf₁ hf₂, eq_on.comp_left⟩
/-! ### Surjectivity on a set -/
/-- `f` is surjective from `a` to `b` if `b` is contained in the image of `a`. -/
def surj_on (f : α → β) (s : set α) (t : set β) : Prop := t ⊆ f '' s
theorem surj_on.subset_range (h : surj_on f s t) : t ⊆ range f :=
subset.trans h $ image_subset_range f s
lemma surj_on_iff_exists_map_subtype :
surj_on f s t ↔ ∃ (t' : set β) (g : s → t'), t ⊆ t' ∧ surjective g ∧ ∀ x : s, f x = g x :=
⟨λ h, ⟨_, (maps_to_image f s).restrict f s _, h, surjective_maps_to_image_restrict _ _, λ _, rfl⟩,
λ ⟨t', g, htt', hg, hfg⟩ y hy, let ⟨x, hx⟩ := hg ⟨y, htt' hy⟩ in
⟨x, x.2, by rw [hfg, hx, subtype.coe_mk]⟩⟩
theorem surj_on_empty (f : α → β) (s : set α) : surj_on f s ∅ := empty_subset _
theorem surj_on_image (f : α → β) (s : set α) : surj_on f s (f '' s) := subset.rfl
theorem surj_on.comap_nonempty (h : surj_on f s t) (ht : t.nonempty) : s.nonempty :=
(ht.mono h).of_image
theorem surj_on.congr (h : surj_on f₁ s t) (H : eq_on f₁ f₂ s) : surj_on f₂ s t :=
by rwa [surj_on, ← H.image_eq]
theorem eq_on.surj_on_iff (h : eq_on f₁ f₂ s) : surj_on f₁ s t ↔ surj_on f₂ s t :=
⟨λ H, H.congr h, λ H, H.congr h.symm⟩
theorem surj_on.mono (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) (hf : surj_on f s₁ t₂) : surj_on f s₂ t₁ :=
subset.trans ht $ subset.trans hf $ image_subset _ hs
theorem surj_on.union (h₁ : surj_on f s t₁) (h₂ : surj_on f s t₂) : surj_on f s (t₁ ∪ t₂) :=
λ x hx, hx.elim (λ hx, h₁ hx) (λ hx, h₂ hx)
theorem surj_on.union_union (h₁ : surj_on f s₁ t₁) (h₂ : surj_on f s₂ t₂) :
surj_on f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
(h₁.mono (subset_union_left _ _) (subset.refl _)).union
(h₂.mono (subset_union_right _ _) (subset.refl _))
theorem surj_on.inter_inter (h₁ : surj_on f s₁ t₁) (h₂ : surj_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
surj_on f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
begin
intros y hy,
rcases h₁ hy.1 with ⟨x₁, hx₁, rfl⟩,
rcases h₂ hy.2 with ⟨x₂, hx₂, heq⟩,
obtain rfl : x₁ = x₂ := h (or.inl hx₁) (or.inr hx₂) heq.symm,
exact mem_image_of_mem f ⟨hx₁, hx₂⟩
end
theorem surj_on.inter (h₁ : surj_on f s₁ t) (h₂ : surj_on f s₂ t) (h : inj_on f (s₁ ∪ s₂)) :
surj_on f (s₁ ∩ s₂) t :=
inter_self t ▸ h₁.inter_inter h₂ h
theorem surj_on.comp (hg : surj_on g t p) (hf : surj_on f s t) : surj_on (g ∘ f) s p :=
subset.trans hg $ subset.trans (image_subset g hf) $ (image_comp g f s) ▸ subset.refl _
lemma surjective_iff_surj_on_univ : surjective f ↔ surj_on f univ univ :=
by simp [surjective, surj_on, subset_def]
lemma surj_on_iff_surjective : surj_on f s univ ↔ surjective (s.restrict f) :=
⟨λ H b, let ⟨a, as, e⟩ := @H b trivial in ⟨⟨a, as⟩, e⟩,
λ H b _, let ⟨⟨a, as⟩, e⟩ := H b in ⟨a, as, e⟩⟩
lemma surj_on.image_eq_of_maps_to (h₁ : surj_on f s t) (h₂ : maps_to f s t) :
f '' s = t :=
eq_of_subset_of_subset h₂.image_subset h₁
lemma image_eq_iff_surj_on_maps_to : f '' s = t ↔ s.surj_on f t ∧ s.maps_to f t :=
begin
refine ⟨_, λ h, h.1.image_eq_of_maps_to h.2⟩,
rintro rfl,
exact ⟨s.surj_on_image f, s.maps_to_image f⟩,
end
lemma surj_on.maps_to_compl (h : surj_on f s t) (h' : injective f) : maps_to f sᶜ tᶜ :=
λ x hs ht, let ⟨x', hx', heq⟩ := h ht in hs $ h' heq ▸ hx'
lemma maps_to.surj_on_compl (h : maps_to f s t) (h' : surjective f) : surj_on f sᶜ tᶜ :=
h'.forall.2 $ λ x ht, mem_image_of_mem _ $ λ hs, ht (h hs)
lemma eq_on.cancel_right (hf : s.eq_on (g₁ ∘ f) (g₂ ∘ f)) (hf' : s.surj_on f t) : t.eq_on g₁ g₂ :=
begin
intros b hb,
obtain ⟨a, ha, rfl⟩ := hf' hb,
exact hf ha,
end
lemma surj_on.cancel_right (hf : s.surj_on f t) (hf' : s.maps_to f t) :
s.eq_on (g₁ ∘ f) (g₂ ∘ f) ↔ t.eq_on g₁ g₂ :=
⟨λ h, h.cancel_right hf, λ h, h.comp_right hf'⟩
lemma eq_on_comp_right_iff : s.eq_on (g₁ ∘ f) (g₂ ∘ f) ↔ (f '' s).eq_on g₁ g₂ :=
(s.surj_on_image f).cancel_right $ s.maps_to_image f
/-! ### Bijectivity -/
/-- `f` is bijective from `s` to `t` if `f` is injective on `s` and `f '' s = t`. -/
def bij_on (f : α → β) (s : set α) (t : set β) : Prop :=
maps_to f s t ∧ inj_on f s ∧ surj_on f s t
lemma bij_on.maps_to (h : bij_on f s t) : maps_to f s t := h.left
lemma bij_on.inj_on (h : bij_on f s t) : inj_on f s := h.right.left
lemma bij_on.surj_on (h : bij_on f s t) : surj_on f s t := h.right.right
lemma bij_on.mk (h₁ : maps_to f s t) (h₂ : inj_on f s) (h₃ : surj_on f s t) :
bij_on f s t :=
⟨h₁, h₂, h₃⟩
lemma bij_on_empty (f : α → β) : bij_on f ∅ ∅ :=
⟨maps_to_empty f ∅, inj_on_empty f, surj_on_empty f ∅⟩
lemma bij_on.inter (h₁ : bij_on f s₁ t₁) (h₂ : bij_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
bij_on f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
⟨h₁.maps_to.inter_inter h₂.maps_to, h₁.inj_on.mono $ inter_subset_left _ _,
h₁.surj_on.inter_inter h₂.surj_on h⟩
lemma bij_on.union (h₁ : bij_on f s₁ t₁) (h₂ : bij_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
bij_on f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
⟨h₁.maps_to.union_union h₂.maps_to, h, h₁.surj_on.union_union h₂.surj_on⟩
theorem bij_on.subset_range (h : bij_on f s t) : t ⊆ range f :=
h.surj_on.subset_range
lemma inj_on.bij_on_image (h : inj_on f s) : bij_on f s (f '' s) :=
bij_on.mk (maps_to_image f s) h (subset.refl _)
theorem bij_on.congr (h₁ : bij_on f₁ s t) (h : eq_on f₁ f₂ s) :
bij_on f₂ s t :=
bij_on.mk (h₁.maps_to.congr h) (h₁.inj_on.congr h) (h₁.surj_on.congr h)
theorem eq_on.bij_on_iff (H : eq_on f₁ f₂ s) : bij_on f₁ s t ↔ bij_on f₂ s t :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
lemma bij_on.image_eq (h : bij_on f s t) :
f '' s = t :=
h.surj_on.image_eq_of_maps_to h.maps_to
theorem bij_on.comp (hg : bij_on g t p) (hf : bij_on f s t) : bij_on (g ∘ f) s p :=
bij_on.mk (hg.maps_to.comp hf.maps_to) (hg.inj_on.comp hf.inj_on hf.maps_to)
(hg.surj_on.comp hf.surj_on)
theorem bij_on.bijective (h : bij_on f s t) :
bijective (t.cod_restrict (s.restrict f) $ λ x, h.maps_to x.val_prop) :=
⟨λ x y h', subtype.ext $ h.inj_on x.2 y.2 $ subtype.ext_iff.1 h',
λ ⟨y, hy⟩, let ⟨x, hx, hxy⟩ := h.surj_on hy in ⟨⟨x, hx⟩, subtype.eq hxy⟩⟩
lemma bijective_iff_bij_on_univ : bijective f ↔ bij_on f univ univ :=
iff.intro
(λ h, let ⟨inj, surj⟩ := h in
⟨maps_to_univ f _, inj.inj_on _, iff.mp surjective_iff_surj_on_univ surj⟩)
(λ h, let ⟨map, inj, surj⟩ := h in
⟨iff.mpr injective_iff_inj_on_univ inj, iff.mpr surjective_iff_surj_on_univ surj⟩)
lemma bij_on.compl (hst : bij_on f s t) (hf : bijective f) : bij_on f sᶜ tᶜ :=
⟨hst.surj_on.maps_to_compl hf.1, hf.1.inj_on _, hst.maps_to.surj_on_compl hf.2
/-! ### left inverse -/
/-- `g` is a left inverse to `f` on `a` means that `g (f x) = x` for all `x ∈ a`. -/
def left_inv_on (f' : β → α) (f : α → β) (s : set α) : Prop :=
∀ ⦃x⦄, x ∈ s → f' (f x) = x
lemma left_inv_on.eq_on (h : left_inv_on f' f s) : eq_on (f' ∘ f) id s := h
lemma left_inv_on.eq (h : left_inv_on f' f s) {x} (hx : x ∈ s) : f' (f x) = x := h hx
lemma left_inv_on.congr_left (h₁ : left_inv_on f₁' f s)
{t : set β} (h₁' : maps_to f s t) (heq : eq_on f₁' f₂' t) : left_inv_on f₂' f s :=
λ x hx, heq (h₁' hx) ▸ h₁ hx
theorem left_inv_on.congr_right (h₁ : left_inv_on f₁' f₁ s) (heq : eq_on f₁ f₂ s) :
left_inv_on f₁' f₂ s :=
λ x hx, heq hx ▸ h₁ hx
theorem left_inv_on.inj_on (h : left_inv_on f₁' f s) : inj_on f s :=
λ x₁ h₁ x₂ h₂ heq,
calc
x₁ = f₁' (f x₁) : eq.symm $ h h₁
... = f₁' (f x₂) : congr_arg f₁' heq
... = x₂ : h h₂
theorem left_inv_on.surj_on (h : left_inv_on f' f s) (hf : maps_to f s t) : surj_on f' t s :=
λ x hx, ⟨f x, hf hx, h hx⟩
theorem left_inv_on.maps_to (h : left_inv_on f' f s) (hf : surj_on f s t) : maps_to f' t s :=
λ y hy, let ⟨x, hs, hx⟩ := hf hy in by rwa [← hx, h hs]
theorem left_inv_on.comp
(hf' : left_inv_on f' f s) (hg' : left_inv_on g' g t) (hf : maps_to f s t) :
left_inv_on (f' ∘ g') (g ∘ f) s :=
λ x h,
calc
(f' ∘ g') ((g ∘ f) x) = f' (f x) : congr_arg f' (hg' (hf h))
... = x : hf' h
theorem left_inv_on.mono (hf : left_inv_on f' f s) (ht : s₁ ⊆ s) : left_inv_on f' f s₁ :=
λ x hx, hf (ht hx)
theorem left_inv_on.image_inter' (hf : left_inv_on f' f s) :
f '' (s₁ ∩ s) = f' ⁻¹' s₁ ∩ f '' s :=
begin
apply subset.antisymm,
{ rintro _ ⟨x, ⟨h₁, h⟩, rfl⟩, exact ⟨by rwa [mem_preimage, hf h], mem_image_of_mem _ h⟩ },
{ rintro _ ⟨h₁, ⟨x, h, rfl⟩⟩, exact mem_image_of_mem _ ⟨by rwa ← hf h, h⟩ }
end
theorem left_inv_on.image_inter (hf : left_inv_on f' f s) :
f '' (s₁ ∩ s) = f' ⁻¹' (s₁ ∩ s) ∩ f '' s :=
begin
rw hf.image_inter',
refine subset.antisymm _ (inter_subset_inter_left _ (preimage_mono $ inter_subset_left _ _)),
rintro _ ⟨h₁, x, hx, rfl⟩, exact ⟨⟨h₁, by rwa hf hx⟩, mem_image_of_mem _ hx⟩
end
theorem left_inv_on.image_image (hf : left_inv_on f' f s) :
f' '' (f '' s) = s :=
by rw [image_image, image_congr hf, image_id']
theorem left_inv_on.image_image' (hf : left_inv_on f' f s) (hs : s₁ ⊆ s) :
f' '' (f '' s₁) = s₁ :=
(hf.mono hs).image_image
/-! ### Right inverse -/
/-- `g` is a right inverse to `f` on `b` if `f (g x) = x` for all `x ∈ b`. -/
@[reducible] def right_inv_on (f' : β → α) (f : α → β) (t : set β) : Prop :=
left_inv_on f f' t
lemma right_inv_on.eq_on (h : right_inv_on f' f t) : eq_on (f ∘ f') id t := h
lemma right_inv_on.eq (h : right_inv_on f' f t) {y} (hy : y ∈ t) : f (f' y) = y := h hy
lemma left_inv_on.right_inv_on_image (h : left_inv_on f' f s) : right_inv_on f' f (f '' s) :=
λ y ⟨x, hx, eq⟩, eq ▸ congr_arg f $ h.eq hx
theorem right_inv_on.congr_left (h₁ : right_inv_on f₁' f t) (heq : eq_on f₁' f₂' t) :
right_inv_on f₂' f t :=
h₁.congr_right heq
theorem right_inv_on.congr_right (h₁ : right_inv_on f' f₁ t) (hg : maps_to f' t s)
(heq : eq_on f₁ f₂ s) : right_inv_on f' f₂ t :=
left_inv_on.congr_left h₁ hg heq
theorem right_inv_on.surj_on (hf : right_inv_on f' f t) (hf' : maps_to f' t s) :
surj_on f s t :=
hf.surj_on hf'
theorem right_inv_on.maps_to (h : right_inv_on f' f t) (hf : surj_on f' t s) : maps_to f s t :=
h.maps_to hf
theorem right_inv_on.comp (hf : right_inv_on f' f t) (hg : right_inv_on g' g p)
(g'pt : maps_to g' p t) : right_inv_on (f' ∘ g') (g ∘ f) p :=
hg.comp hf g'pt
theorem right_inv_on.mono (hf : right_inv_on f' f t) (ht : t₁ ⊆ t) : right_inv_on f' f t₁ :=
hf.mono ht
theorem inj_on.right_inv_on_of_left_inv_on (hf : inj_on f s) (hf' : left_inv_on f f' t)
(h₁ : maps_to f s t) (h₂ : maps_to f' t s) :
right_inv_on f f' s :=
λ x h, hf (h₂ $ h₁ h) h (hf' (h₁ h))
theorem eq_on_of_left_inv_on_of_right_inv_on (h₁ : left_inv_on f₁' f s) (h₂ : right_inv_on f₂' f t)
(h : maps_to f₂' t s) : eq_on f₁' f₂' t :=
λ y hy,
calc f₁' y = (f₁' ∘ f ∘ f₂') y : congr_arg f₁' (h₂ hy).symm
... = f₂' y : h₁ (h hy)
theorem surj_on.left_inv_on_of_right_inv_on (hf : surj_on f s t) (hf' : right_inv_on f f' s) :
left_inv_on f f' t :=
λ y hy, let ⟨x, hx, heq⟩ := hf hy in by rw [← heq, hf' hx]
/-! ### Two-side inverses -/
/-- `g` is an inverse to `f` viewed as a map from `a` to `b` -/
def inv_on (g : β → α) (f : α → β) (s : set α) (t : set β) : Prop :=
left_inv_on g f s ∧ right_inv_on g f t
lemma inv_on.symm (h : inv_on f' f s t) : inv_on f f' t s := ⟨h.right, h.left⟩
lemma inv_on.mono (h : inv_on f' f s t) (hs : s₁ ⊆ s) (ht : t₁ ⊆ t) : inv_on f' f s₁ t₁ :=
⟨h.1.mono hs, h.2.mono ht⟩
/-- If functions `f'` and `f` are inverse on `s` and `t`, `f` maps `s` into `t`, and `f'` maps `t`
into `s`, then `f` is a bijection between `s` and `t`. The `maps_to` arguments can be deduced from
`surj_on` statements using `left_inv_on.maps_to` and `right_inv_on.maps_to`. -/
theorem inv_on.bij_on (h : inv_on f' f s t) (hf : maps_to f s t) (hf' : maps_to f' t s) :
bij_on f s t :=
⟨hf, h.left.inj_on, h.right.surj_on hf'⟩
end set
/-! ### `inv_fun_on` is a left/right inverse -/
namespace function
variables [nonempty α] {s : set α} {f : α → β} {a : α} {b : β}
local attribute [instance, priority 10] classical.prop_decidable
/-- Construct the inverse for a function `f` on domain `s`. This function is a right inverse of `f`
on `f '' s`. For a computable version, see `function.injective.inv_of_mem_range`. -/
noncomputable def inv_fun_on (f : α → β) (s : set α) (b : β) : α :=
if h : ∃a, a ∈ s ∧ f a = b then classical.some h else classical.choice ‹nonempty α›
theorem inv_fun_on_pos (h : ∃a∈s, f a = b) : inv_fun_on f s b ∈ s ∧ f (inv_fun_on f s b) = b :=
by rw [bex_def] at h; rw [inv_fun_on, dif_pos h]; exact classical.some_spec h
theorem inv_fun_on_mem (h : ∃a∈s, f a = b) : inv_fun_on f s b ∈ s := (inv_fun_on_pos h).left
theorem inv_fun_on_eq (h : ∃a∈s, f a = b) : f (inv_fun_on f s b) = b := (inv_fun_on_pos h).right
theorem inv_fun_on_neg (h : ¬ ∃a∈s, f a = b) : inv_fun_on f s b = classical.choice ‹nonempty α› :=
by rw [bex_def] at h; rw [inv_fun_on, dif_neg h]
end function
namespace set
open function
variables {s s₁ s₂ : set α} {t : set β} {f : α → β}
theorem inj_on.left_inv_on_inv_fun_on [nonempty α] (h : inj_on f s) :
left_inv_on (inv_fun_on f s) f s :=
λ a ha, have ∃a'∈s, f a' = f a, from ⟨a, ha, rfl⟩,
h (inv_fun_on_mem this) ha (inv_fun_on_eq this)
lemma inj_on.inv_fun_on_image [nonempty α] (h : inj_on f s₂) (ht : s₁ ⊆ s₂) :
(inv_fun_on f s₂) '' (f '' s₁) = s₁ :=
h.left_inv_on_inv_fun_on.image_image' ht
theorem surj_on.right_inv_on_inv_fun_on [nonempty α] (h : surj_on f s t) :
right_inv_on (inv_fun_on f s) f t :=
λ y hy, inv_fun_on_eq $ mem_image_iff_bex.1 $ h hy
theorem bij_on.inv_on_inv_fun_on [nonempty α] (h : bij_on f s t) :
inv_on (inv_fun_on f s) f s t :=
⟨h.inj_on.left_inv_on_inv_fun_on, h.surj_on.right_inv_on_inv_fun_on⟩
theorem surj_on.inv_on_inv_fun_on [nonempty α] (h : surj_on f s t) :
inv_on (inv_fun_on f s) f (inv_fun_on f s '' t) t :=
begin
refine ⟨_, h.right_inv_on_inv_fun_on⟩,
rintros _ ⟨y, hy, rfl⟩,
rw [h.right_inv_on_inv_fun_on hy]
end
theorem surj_on.maps_to_inv_fun_on [nonempty α] (h : surj_on f s t) :
maps_to (inv_fun_on f s) t s :=
λ y hy, mem_preimage.2 $ inv_fun_on_mem $ mem_image_iff_bex.1 $ h hy
theorem surj_on.bij_on_subset [nonempty α] (h : surj_on f s t) :
bij_on f (inv_fun_on f s '' t) t :=
begin
refine h.inv_on_inv_fun_on.bij_on _ (maps_to_image _ _),
rintros _ ⟨y, hy, rfl⟩,
rwa [h.right_inv_on_inv_fun_on hy]
end
theorem surj_on_iff_exists_bij_on_subset :
surj_on f s t ↔ ∃ s' ⊆ s, bij_on f s' t :=
begin
split,
{ rcases eq_empty_or_nonempty t with rfl|ht,
{ exact λ _, ⟨∅, empty_subset _, bij_on_empty f⟩ },
{ assume h,
haveI : nonempty α := ⟨classical.some (h.comap_nonempty ht)⟩,
exact ⟨_, h.maps_to_inv_fun_on.image_subset, h.bij_on_subset⟩ }},
{ rintros ⟨s', hs', hfs'⟩,
exact hfs'.surj_on.mono hs' (subset.refl _) }
end
lemma preimage_inv_fun_of_mem [n : nonempty α] {f : α → β} (hf : injective f) {s : set α}
(h : classical.choice n ∈ s) : inv_fun f ⁻¹' s = f '' s ∪ (range f)ᶜ :=
begin
ext x,
rcases em (x ∈ range f) with ⟨a, rfl⟩|hx,
{ simp [left_inverse_inv_fun hf _, hf.mem_set_image] },
{ simp [mem_preimage, inv_fun_neg hx, h, hx] }
end
lemma preimage_inv_fun_of_not_mem [n : nonempty α] {f : α → β} (hf : injective f)
{s : set α} (h : classical.choice n ∉ s) : inv_fun f ⁻¹' s = f '' s :=
begin
ext x,
rcases em (x ∈ range f) with ⟨a, rfl⟩|hx,
{ rw [mem_preimage, left_inverse_inv_fun hf, hf.mem_set_image] },
{ have : x ∉ f '' s, from λ h', hx (image_subset_range _ _ h'),
simp only [mem_preimage, inv_fun_neg hx, h, this] },
end
end set
/-! ### Monotone -/
namespace monotone
variables [preorder α] [preorder β] {f : α → β}
protected lemma restrict (h : monotone f) (s : set α) : monotone (s.restrict f) :=
λ x y hxy, h hxy
protected lemma cod_restrict (h : monotone f) {s : set β} (hs : ∀ x, f x ∈ s) :
monotone (s.cod_restrict f hs) := h
protected lemma range_factorization (h : monotone f) : monotone (set.range_factorization f) := h
end monotone
/-! ### Piecewise defined function -/
namespace set
variables {δ : α → Sort y} (s : set α) (f g : Πi, δ i)
@[simp] lemma piecewise_empty [∀i : α, decidable (i ∈ (∅ : set α))] : piecewise ∅ f g = g :=
by { ext i, simp [piecewise] }
@[simp] lemma piecewise_univ [∀i : α, decidable (i ∈ (set.univ : set α))] :
piecewise set.univ f g = f :=
by { ext i, simp [piecewise] }
@[simp] lemma piecewise_insert_self {j : α} [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g j = f j :=
by simp [piecewise]
variable [∀j, decidable (j ∈ s)]
instance compl.decidable_mem (j : α) : decidable (j ∈ sᶜ) := not.decidable
lemma piecewise_insert [decidable_eq α] (j : α) [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g = function.update (s.piecewise f g) j (f j) :=
begin
simp [piecewise],
ext i,
by_cases h : i = j,
{ rw h, simp },
{ by_cases h' : i ∈ s; simp [h, h'] }
end
@[simp, priority 990]
lemma piecewise_eq_of_mem {i : α} (hi : i ∈ s) : s.piecewise f g i = f i := if_pos hi
@[simp, priority 990]
lemma piecewise_eq_of_not_mem {i : α} (hi : i ∉ s) : s.piecewise f g i = g i := if_neg hi
lemma piecewise_singleton (x : α) [Π y, decidable (y ∈ ({x} : set α))] [decidable_eq α]
(f g : α → β) : piecewise {x} f g = function.update g x (f x) :=
by { ext y, by_cases hy : y = x, { subst y, simp }, { simp [hy] } }
lemma piecewise_eq_on (f g : α → β) : eq_on (s.piecewise f g) f s :=
λ _, piecewise_eq_of_mem _ _ _
lemma piecewise_eq_on_compl (f g : α → β) : eq_on (s.piecewise f g) g sᶜ :=
λ _, piecewise_eq_of_not_mem _ _ _
lemma piecewise_le {δ : α → Type*} [Π i, preorder (δ i)] {s : set α} [Π j, decidable (j ∈ s)]
{f₁ f₂ g : Π i, δ i} (h₁ : ∀ i ∈ s, f₁ i ≤ g i) (h₂ : ∀ i ∉ s, f₂ i ≤ g i) :
s.piecewise f₁ f₂ ≤ g :=
λ i, if h : i ∈ s then by simp * else by simp *
lemma le_piecewise {δ : α → Type*} [Π i, preorder (δ i)] {s : set α} [Π j, decidable (j ∈ s)]
{f₁ f₂ g : Π i, δ i} (h₁ : ∀ i ∈ s, g i ≤ f₁ i) (h₂ : ∀ i ∉ s, g i ≤ f₂ i) :
g ≤ s.piecewise f₁ f₂ :=
@piecewise_le α (λ i, (δ i)ᵒᵈ) _ s _ _ _ _ h₁ h₂
lemma piecewise_le_piecewise {δ : α → Type*} [Π i, preorder (δ i)] {s : set α}
[Π j, decidable (j ∈ s)] {f₁ f₂ g₁ g₂ : Π i, δ i} (h₁ : ∀ i ∈ s, f₁ i ≤ g₁ i)
(h₂ : ∀ i ∉ s, f₂ i ≤ g₂ i) :
s.piecewise f₁ f₂ ≤ s.piecewise g₁ g₂ :=
by apply piecewise_le; intros; simp *
@[simp, priority 990]
lemma piecewise_insert_of_ne {i j : α} (h : i ≠ j) [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g i = s.piecewise f g i :=
by simp [piecewise, h]
@[simp] lemma piecewise_compl [∀ i, decidable (i ∈ sᶜ)] : sᶜ.piecewise f g = s.piecewise g f :=
funext $ λ x, if hx : x ∈ s then by simp [hx] else by simp [hx]
@[simp] lemma piecewise_range_comp {ι : Sort*} (f : ι → α) [Π j, decidable (j ∈ range f)]
(g₁ g₂ : α → β) :
(range f).piecewise g₁ g₂ ∘ f = g₁ ∘ f :=
comp_eq_of_eq_on_range $ piecewise_eq_on _ _ _
theorem maps_to.piecewise_ite {s s₁ s₂ : set α} {t t₁ t₂ : set β} {f₁ f₂ : α → β}
[∀ i, decidable (i ∈ s)]
(h₁ : maps_to f₁ (s₁ ∩ s) (t₁ ∩ t)) (h₂ : maps_to f₂ (s₂ ∩ sᶜ) (t₂ ∩ tᶜ)) :
maps_to (s.piecewise f₁ f₂) (s.ite s₁ s₂) (t.ite t₁ t₂) :=
begin
refine (h₁.congr _).union_union (h₂.congr _),
exacts [(piecewise_eq_on s f₁ f₂).symm.mono (inter_subset_right _ _),
(piecewise_eq_on_compl s f₁ f₂).symm.mono (inter_subset_right _ _)]
end
theorem eq_on_piecewise {f f' g : α → β} {t} :
eq_on (s.piecewise f f') g t ↔ eq_on f g (t ∩ s) ∧ eq_on f' g (t ∩ sᶜ) :=
begin
simp only [eq_on, ← forall_and_distrib],
refine forall_congr (λ a, _), by_cases a ∈ s; simp *
end
theorem eq_on.piecewise_ite' {f f' g : α → β} {t t'} (h : eq_on f g (t ∩ s))
(h' : eq_on f' g (t' ∩ sᶜ)) :
eq_on (s.piecewise f f') g (s.ite t t') :=
by simp [eq_on_piecewise, *]
theorem eq_on.piecewise_ite {f f' g : α → β} {t t'} (h : eq_on f g t)
(h' : eq_on f' g t') :
eq_on (s.piecewise f f') g (s.ite t t') :=
(h.mono (inter_subset_left _ _)).piecewise_ite' s (h'.mono (inter_subset_left _ _))
lemma piecewise_preimage (f g : α → β) (t) :
s.piecewise f g ⁻¹' t = s.ite (f ⁻¹' t) (g ⁻¹' t) :=
ext $ λ x, by by_cases x ∈ s; simp [*, set.ite]
lemma apply_piecewise {δ' : α → Sort*} (h : Π i, δ i → δ' i) {x : α} :
h x (s.piecewise f g x) = s.piecewise (λ x, h x (f x)) (λ x, h x (g x)) x :=
by by_cases hx : x ∈ s; simp [hx]
lemma apply_piecewise₂ {δ' δ'' : α → Sort*} (f' g' : Π i, δ' i) (h : Π i, δ i → δ' i → δ'' i)
{x : α} :
h x (s.piecewise f g x) (s.piecewise f' g' x) =
s.piecewise (λ x, h x (f x) (f' x)) (λ x, h x (g x) (g' x)) x :=
by by_cases hx : x ∈ s; simp [hx]
lemma piecewise_op {δ' : α → Sort*} (h : Π i, δ i → δ' i) :
s.piecewise (λ x, h x (f x)) (λ x, h x (g x)) = λ x, h x (s.piecewise f g x) :=
funext $ λ x, (apply_piecewise _ _ _ _).symm
lemma piecewise_op₂ {δ' δ'' : α → Sort*} (f' g' : Π i, δ' i) (h : Π i, δ i → δ' i → δ'' i) :
s.piecewise (λ x, h x (f x) (f' x)) (λ x, h x (g x) (g' x)) =
λ x, h x (s.piecewise f g x) (s.piecewise f' g' x) :=
funext $ λ x, (apply_piecewise₂ _ _ _ _ _ _).symm
@[simp] lemma piecewise_same : s.piecewise f f = f :=
by { ext x, by_cases hx : x ∈ s; simp [hx] }
lemma range_piecewise (f g : α → β) : range (s.piecewise f g) = f '' s ∪ g '' sᶜ :=
begin
ext y, split,
{ rintro ⟨x, rfl⟩, by_cases h : x ∈ s;[left, right]; use x; simp [h] },
{ rintro (⟨x, hx, rfl⟩|⟨x, hx, rfl⟩); use x; simp * at * }
end
lemma injective_piecewise_iff {f g : α → β} :
injective (s.piecewise f g) ↔ inj_on f s ∧ inj_on g sᶜ ∧ (∀ (x ∈ s) (y ∉ s), f x ≠ g y) :=
begin
rw [injective_iff_inj_on_univ, ← union_compl_self s, inj_on_union (@disjoint_compl_right _ s _),
(piecewise_eq_on s f g).inj_on_iff, (piecewise_eq_on_compl s f g).inj_on_iff],
refine and_congr iff.rfl (and_congr iff.rfl $ forall₄_congr $ λ x hx y hy, _),
rw [piecewise_eq_of_mem s f g hx, piecewise_eq_of_not_mem s f g hy]
end
lemma piecewise_mem_pi {δ : α → Type*} {t : set α} {t' : Π i, set (δ i)}
{f g} (hf : f ∈ pi t t') (hg : g ∈ pi t t') :
s.piecewise f g ∈ pi t t' :=
by { intros i ht, by_cases hs : i ∈ s; simp [hf i ht, hg i ht, hs] }
@[simp] lemma pi_piecewise {ι : Type*} {α : ι → Type*} (s s' : set ι)
(t t' : Π i, set (α i)) [Π x, decidable (x ∈ s')] :
pi s (s'.piecewise t t') = pi (s ∩ s') t ∩ pi (s \ s') t' :=
begin
ext x,
simp only [mem_pi, mem_inter_eq, ← forall_and_distrib],
refine forall_congr (λ i, _),
by_cases hi : i ∈ s'; simp *
end
lemma univ_pi_piecewise {ι : Type*} {α : ι → Type*} (s : set ι)
(t : Π i, set (α i)) [Π x, decidable (x ∈ s)] :
pi univ (s.piecewise t (λ _, univ)) = pi s t :=
by simp
end set
lemma strict_mono_on.inj_on [linear_order α] [preorder β] {f : α → β} {s : set α}
(H : strict_mono_on f s) :
s.inj_on f :=
λ x hx y hy hxy, show ordering.eq.compares x y, from (H.compares hx hy).1 hxy
lemma strict_anti_on.inj_on [linear_order α] [preorder β] {f : α → β} {s : set α}
(H : strict_anti_on f s) :
s.inj_on f :=
@strict_mono_on.inj_on α βᵒᵈ _ _ f s H
lemma strict_mono_on.comp [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_mono_on g t)
(hf : strict_mono_on f s) (hs : set.maps_to f s t) :
strict_mono_on (g ∘ f) s :=
λ x hx y hy hxy, hg (hs hx) (hs hy) $ hf hx hy hxy
lemma strict_mono_on.comp_strict_anti_on [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_mono_on g t)
(hf : strict_anti_on f s) (hs : set.maps_to f s t) :
strict_anti_on (g ∘ f) s :=
λ x hx y hy hxy, hg (hs hy) (hs hx) $ hf hx hy hxy
lemma strict_anti_on.comp [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_anti_on g t)
(hf : strict_anti_on f s) (hs : set.maps_to f s t) :
strict_mono_on (g ∘ f) s :=
λ x hx y hy hxy, hg (hs hy) (hs hx) $ hf hx hy hxy
lemma strict_anti_on.comp_strict_mono_on [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_anti_on g t)
(hf : strict_mono_on f s) (hs : set.maps_to f s t) :
strict_anti_on (g ∘ f) s :=
λ x hx y hy hxy, hg (hs hx) (hs hy) $ hf hx hy hxy
lemma strict_mono.cod_restrict [preorder α] [preorder β] {f : α → β} (hf : strict_mono f)
{s : set β} (hs : ∀ x, f x ∈ s) :
strict_mono (set.cod_restrict f s hs) :=
hf
namespace function
open set
variables {fa : α → α} {fb : β → β} {f : α → β} {g : β → γ} {s t : set α}
lemma injective.comp_inj_on (hg : injective g) (hf : s.inj_on f) : s.inj_on (g ∘ f) :=
(hg.inj_on univ).comp hf (maps_to_univ _ _)
lemma surjective.surj_on (hf : surjective f) (s : set β) :
surj_on f univ s :=
(surjective_iff_surj_on_univ.1 hf).mono (subset.refl _) (subset_univ _)
lemma left_inverse.left_inv_on {g : β → α} (h : left_inverse f g) (s : set β) :
left_inv_on f g s :=
λ x hx, h x
lemma right_inverse.right_inv_on {g : β → α} (h : right_inverse f g) (s : set α) :
right_inv_on f g s :=
λ x hx, h x
lemma left_inverse.right_inv_on_range {g : β → α} (h : left_inverse f g) :
right_inv_on f g (range g) :=
forall_range_iff.2 $ λ i, congr_arg g (h i)
namespace semiconj
lemma maps_to_image (h : semiconj f fa fb) (ha : maps_to fa s t) :
maps_to fb (f '' s) (f '' t) :=
λ y ⟨x, hx, hy⟩, hy ▸ ⟨fa x, ha hx, h x⟩
lemma maps_to_range (h : semiconj f fa fb) : maps_to fb (range f) (range f) :=
λ y ⟨x, hy⟩, hy ▸ ⟨fa x, h x⟩
lemma surj_on_image (h : semiconj f fa fb) (ha : surj_on fa s t) :
surj_on fb (f '' s) (f '' t) :=
begin
rintros y ⟨x, hxt, rfl⟩,
rcases ha hxt with ⟨x, hxs, rfl⟩,
rw [h x],
exact mem_image_of_mem _ (mem_image_of_mem _ hxs)
end
lemma surj_on_range (h : semiconj f fa fb) (ha : surjective fa) :
surj_on fb (range f) (range f) :=
by { rw ← image_univ, exact h.surj_on_image (ha.surj_on univ) }
lemma inj_on_image (h : semiconj f fa fb) (ha : inj_on fa s) (hf : inj_on f (fa '' s)) :
inj_on fb (f '' s) :=
begin
rintros _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ H,
simp only [← h.eq] at H,
exact congr_arg f (ha hx hy $ hf (mem_image_of_mem fa hx) (mem_image_of_mem fa hy) H)
end
lemma inj_on_range (h : semiconj f fa fb) (ha : injective fa) (hf : inj_on f (range fa)) :
inj_on fb (range f) :=
by { rw ← image_univ at *, exact h.inj_on_image (ha.inj_on univ) hf }
lemma bij_on_image (h : semiconj f fa fb) (ha : bij_on fa s t) (hf : inj_on f t) :
bij_on fb (f '' s) (f '' t) :=
⟨h.maps_to_image ha.maps_to, h.inj_on_image ha.inj_on (ha.image_eq.symm ▸ hf),
h.surj_on_image ha.surj_on⟩
lemma bij_on_range (h : semiconj f fa fb) (ha : bijective fa) (hf : injective f) :
bij_on fb (range f) (range f) :=
begin
rw [← image_univ],
exact h.bij_on_image (bijective_iff_bij_on_univ.1 ha) (hf.inj_on univ)
end
lemma maps_to_preimage (h : semiconj f fa fb) {s t : set β} (hb : maps_to fb s t) :
maps_to fa (f ⁻¹' s) (f ⁻¹' t) :=
λ x hx, by simp only [mem_preimage, h x, hb hx]
lemma inj_on_preimage (h : semiconj f fa fb) {s : set β} (hb : inj_on fb s)
(hf : inj_on f (f ⁻¹' s)) :
inj_on fa (f ⁻¹' s) :=
begin
intros x hx y hy H,
have := congr_arg f H,
rw [h.eq, h.eq] at this,
exact hf hx hy (hb hx hy this)
end
end semiconj
lemma update_comp_eq_of_not_mem_range' {α β : Sort*} {γ : β → Sort*} [decidable_eq β]
(g : Π b, γ b) {f : α → β} {i : β} (a : γ i) (h : i ∉ set.range f) :
(λ j, (function.update g i a) (f j)) = (λ j, g (f j)) :=
update_comp_eq_of_forall_ne' _ _ $ λ x hx, h ⟨x, hx⟩
/-- Non-dependent version of `function.update_comp_eq_of_not_mem_range'` -/
lemma update_comp_eq_of_not_mem_range {α β γ : Sort*} [decidable_eq β]
(g : β → γ) {f : α → β} {i : β} (a : γ) (h : i ∉ set.range f) :
(function.update g i a) ∘ f = g ∘ f :=
update_comp_eq_of_not_mem_range' g a h
lemma insert_inj_on (s : set α) : sᶜ.inj_on (λ a, insert a s) := λ a ha b _, (insert_inj ha).1
end function