Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
17.9 kB
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import data.polynomial.reverse
import algebra.associated
import algebra.regular.smul
/-!
# Theory of monic polynomials
We give several tools for proving that polynomials are monic, e.g.
`monic.mul`, `monic.map`, `monic.pow`.
-/
noncomputable theory
open finset
open_locale big_operators classical polynomial
namespace polynomial
universes u v y
variables {R : Type u} {S : Type v} {a b : R} {m n : ℕ} {ι : Type y}
section semiring
variables [semiring R] {p q r : R[X]}
lemma monic_zero_iff_subsingleton : monic (0 : R[X]) ↔ subsingleton R :=
subsingleton_iff_zero_eq_one
lemma not_monic_zero_iff : ¬ monic (0 : R[X]) ↔ (0 : R) ≠ 1 :=
(monic_zero_iff_subsingleton.trans subsingleton_iff_zero_eq_one.symm).not
lemma monic_zero_iff_subsingleton' :
monic (0 : R[X]) ↔ (∀ f g : R[X], f = g) ∧ (∀ a b : R, a = b) :=
polynomial.monic_zero_iff_subsingleton.trans ⟨by { introI, simp },
λ h, subsingleton_iff.mpr h.2
lemma monic.as_sum (hp : p.monic) :
p = X^(p.nat_degree) + (∑ i in range p.nat_degree, C (p.coeff i) * X^i) :=
begin
conv_lhs { rw [p.as_sum_range_C_mul_X_pow, sum_range_succ_comm] },
suffices : C (p.coeff p.nat_degree) = 1,
{ rw [this, one_mul] },
exact congr_arg C hp
end
lemma ne_zero_of_ne_zero_of_monic (hp : p0) (hq : monic q) : q0 :=
begin
rintro rfl,
rw [monic.def, leading_coeff_zero] at hq,
rw [← mul_one p, ← C_1, ← hq, C_0, mul_zero] at hp,
exact hp rfl
end
lemma monic.map [semiring S] (f : R →+* S) (hp : monic p) : monic (p.map f) :=
begin
nontriviality,
have : f (leading_coeff p) ≠ 0,
{ rw [show _ = _, from hp, f.map_one],
exact one_ne_zero, },
rw [monic, leading_coeff, coeff_map],
suffices : p.coeff (map f p).nat_degree = 1,
{ simp [this], },
rwa nat_degree_eq_of_degree_eq (degree_map_eq_of_leading_coeff_ne_zero f this),
end
lemma monic_C_mul_of_mul_leading_coeff_eq_one {b : R} (hp : b * p.leading_coeff = 1) :
monic (C b * p) :=
by { nontriviality, rw [monic, leading_coeff_mul' _]; simp [leading_coeff_C b, hp] }
lemma monic_mul_C_of_leading_coeff_mul_eq_one {b : R} (hp : p.leading_coeff * b = 1) :
monic (p * C b) :=
by { nontriviality, rw [monic, leading_coeff_mul' _]; simp [leading_coeff_C b, hp] }
theorem monic_of_degree_le (n : ℕ) (H1 : degree p ≤ n) (H2 : coeff p n = 1) : monic p :=
decidable.by_cases
(assume H : degree p < n, eq_of_zero_eq_one
(H2 ▸ (coeff_eq_zero_of_degree_lt H).symm) _ _)
(assume H : ¬degree p < n,
by rwa [monic, leading_coeff, nat_degree, (lt_or_eq_of_le H1).resolve_left H])
theorem monic_X_pow_add {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) + p) :=
have H1 : degree p < n+1, from lt_of_le_of_lt H (with_bot.coe_lt_coe.2 (nat.lt_succ_self n)),
monic_of_degree_le (n+1)
(le_trans (degree_add_le _ _) (max_le (degree_X_pow_le _) (le_of_lt H1)))
(by rw [coeff_add, coeff_X_pow, if_pos rfl, coeff_eq_zero_of_degree_lt H1, add_zero])
theorem monic_X_add_C (x : R) : monic (X + C x) :=
pow_one (X : R[X]) ▸ monic_X_pow_add degree_C_le
lemma monic.mul (hp : monic p) (hq : monic q) : monic (p * q) :=
if h0 : (0 : R) = 1 then by haveI := subsingleton_of_zero_eq_one h0;
exact subsingleton.elim _ _
else
have leading_coeff p * leading_coeff q ≠ 0, by simp [monic.def.1 hp, monic.def.1 hq, ne.symm h0],
by rw [monic.def, leading_coeff_mul' this, monic.def.1 hp, monic.def.1 hq, one_mul]
lemma monic.pow (hp : monic p) : ∀ (n : ℕ), monic (p ^ n)
| 0 := monic_one
| (n+1) := by { rw pow_succ, exact hp.mul (monic.pow n) }
lemma monic.add_of_left (hp : monic p) (hpq : degree q < degree p) :
monic (p + q) :=
by rwa [monic, add_comm, leading_coeff_add_of_degree_lt hpq]
lemma monic.add_of_right (hq : monic q) (hpq : degree p < degree q) :
monic (p + q) :=
by rwa [monic, leading_coeff_add_of_degree_lt hpq]
lemma monic.of_mul_monic_left (hp : p.monic) (hpq : (p * q).monic) : q.monic :=
begin
contrapose! hpq,
rw monic.def at hpq ⊢,
rwa leading_coeff_monic_mul hp,
end
lemma monic.of_mul_monic_right (hq : q.monic) (hpq : (p * q).monic) : p.monic :=
begin
contrapose! hpq,
rw monic.def at hpq ⊢,
rwa leading_coeff_mul_monic hq,
end
namespace monic
@[simp]
lemma nat_degree_eq_zero_iff_eq_one {p : R[X]} (hp : p.monic) :
p.nat_degree = 0 ↔ p = 1 :=
begin
split; intro h,
swap, { rw h, exact nat_degree_one },
have : p = C (p.coeff 0),
{ rw ← polynomial.degree_le_zero_iff,
rwa polynomial.nat_degree_eq_zero_iff_degree_le_zero at h },
rw this, convert C_1, rw ← h, apply hp,
end
@[simp]
lemma degree_le_zero_iff_eq_one {p : R[X]} (hp : p.monic) :
p.degree0 ↔ p = 1 :=
by rw [←hp.nat_degree_eq_zero_iff_eq_one, nat_degree_eq_zero_iff_degree_le_zero]
lemma nat_degree_mul {p q : R[X]} (hp : p.monic) (hq : q.monic) :
(p * q).nat_degree = p.nat_degree + q.nat_degree :=
begin
nontriviality R,
apply nat_degree_mul',
simp [hp.leading_coeff, hq.leading_coeff]
end
lemma degree_mul_comm {p : R[X]} (hp : p.monic) (q : R[X]) :
(p * q).degree = (q * p).degree :=
begin
by_cases h : q = 0,
{ simp [h] },
rw [degree_mul', hp.degree_mul],
{ exact add_comm _ _ },
{ rwa [hp.leading_coeff, one_mul, leading_coeff_ne_zero] }
end
lemma nat_degree_mul' {p q : R[X]} (hp : p.monic) (hq : q0) :
(p * q).nat_degree = p.nat_degree + q.nat_degree :=
begin
rw [nat_degree_mul', add_comm],
simpa [hp.leading_coeff, leading_coeff_ne_zero]
end
lemma nat_degree_mul_comm {p : R[X]} (hp : p.monic) (q : R[X]) :
(p * q).nat_degree = (q * p).nat_degree :=
begin
by_cases h : q = 0,
{ simp [h] },
rw [hp.nat_degree_mul' h, polynomial.nat_degree_mul', add_comm],
simpa [hp.leading_coeff, leading_coeff_ne_zero]
end
lemma next_coeff_mul {p q : R[X]} (hp : monic p) (hq : monic q) :
next_coeff (p * q) = next_coeff p + next_coeff q :=
begin
nontriviality,
simp only [← coeff_one_reverse],
rw reverse_mul;
simp [coeff_mul, nat.antidiagonal, hp.leading_coeff, hq.leading_coeff, add_comm]
end
lemma eq_one_of_map_eq_one {S : Type*} [semiring S] [nontrivial S]
(f : R →+* S) (hp : p.monic) (map_eq : p.map f = 1) : p = 1 :=
begin
nontriviality R,
have hdeg : p.degree = 0,
{ rw [← degree_map_eq_of_leading_coeff_ne_zero f _, map_eq, degree_one],
{ rw [hp.leading_coeff, f.map_one],
exact one_ne_zero } },
have hndeg : p.nat_degree = 0 :=
with_bot.coe_eq_coe.mp ((degree_eq_nat_degree hp.ne_zero).symm.trans hdeg),
convert eq_C_of_degree_eq_zero hdeg,
rw [← hndeg, ← polynomial.leading_coeff, hp.leading_coeff, C.map_one]
end
lemma nat_degree_pow (hp : p.monic) (n : ℕ) :
(p ^ n).nat_degree = n * p.nat_degree :=
begin
induction n with n hn,
{ simp },
{ rw [pow_succ, hp.nat_degree_mul (hp.pow n), hn],
ring }
end
end monic
@[simp] lemma nat_degree_pow_X_add_C [nontrivial R] (n : ℕ) (r : R) :
((X + C r) ^ n).nat_degree = n :=
by rw [(monic_X_add_C r).nat_degree_pow, nat_degree_X_add_C, mul_one]
end semiring
section comm_semiring
variables [comm_semiring R] {p : R[X]}
lemma monic_multiset_prod_of_monic (t : multiset ι) (f : ι → R[X])
(ht : ∀ i ∈ t, monic (f i)) :
monic (t.map f).prod :=
begin
revert ht,
refine t.induction_on _ _, { simp },
intros a t ih ht,
rw [multiset.map_cons, multiset.prod_cons],
exact (ht _ (multiset.mem_cons_self _ _)).mul (ih (λ _ hi, ht _ (multiset.mem_cons_of_mem hi)))
end
lemma monic_prod_of_monic (s : finset ι) (f : ι → R[X]) (hs : ∀ i ∈ s, monic (f i)) :
monic (∏ i in s, f i) :=
monic_multiset_prod_of_monic s.1 f hs
lemma is_unit_C {x : R} : is_unit (C x) ↔ is_unit x :=
begin
rw [is_unit_iff_dvd_one, is_unit_iff_dvd_one],
split,
{ rintros ⟨g, hg⟩,
replace hg := congr_arg (eval 0) hg,
rw [eval_one, eval_mul, eval_C] at hg,
exact ⟨g.eval 0, hg⟩ },
{ rintros ⟨y, hy⟩,
exact ⟨C y, by rw [← C_mul, ← hy, C_1]⟩ }
end
lemma eq_one_of_is_unit_of_monic (hm : monic p) (hpu : is_unit p) : p = 1 :=
have degree p ≤ 0,
from calc degree p ≤ degree (1 : R[X]) :
let ⟨u, hu⟩ := is_unit_iff_dvd_one.1 hpu in
if hu0 : u = 0
then begin
rw [hu0, mul_zero] at hu,
rw [← mul_one p, hu, mul_zero],
simp
end
else have p.leading_coeff * u.leading_coeff ≠ 0,
by rw [hm.leading_coeff, one_mul, ne.def, leading_coeff_eq_zero];
exact hu0,
by rw [hu, degree_mul' this];
exact le_add_of_nonneg_right (degree_nonneg_iff_ne_zero.2 hu0)
... ≤ 0 : degree_one_le,
by rw [eq_C_of_degree_le_zero this, ← nat_degree_eq_zero_iff_degree_le_zero.2 this,
← leading_coeff, hm.leading_coeff, C_1]
lemma monic.next_coeff_multiset_prod (t : multiset ι) (f : ι → R[X])
(h : ∀ i ∈ t, monic (f i)) :
next_coeff (t.map f).prod = (t.map (λ i, next_coeff (f i))).sum :=
begin
revert h,
refine multiset.induction_on t _ (λ a t ih ht, _),
{ simp only [multiset.not_mem_zero, forall_prop_of_true, forall_prop_of_false, multiset.map_zero,
multiset.prod_zero, multiset.sum_zero, not_false_iff, forall_true_iff],
rw ← C_1, rw next_coeff_C_eq_zero },
{ rw [multiset.map_cons, multiset.prod_cons, multiset.map_cons, multiset.sum_cons,
monic.next_coeff_mul, ih],
exacts [λ i hi, ht i (multiset.mem_cons_of_mem hi), ht a (multiset.mem_cons_self _ _),
monic_multiset_prod_of_monic _ _ (λ b bs, ht _ (multiset.mem_cons_of_mem bs))] }
end
lemma monic.next_coeff_prod (s : finset ι) (f : ι → R[X]) (h : ∀ i ∈ s, monic (f i)) :
next_coeff (∏ i in s, f i) = ∑ i in s, next_coeff (f i) :=
monic.next_coeff_multiset_prod s.1 f h
end comm_semiring
section semiring
variables [semiring R]
@[simp]
lemma monic.nat_degree_map [semiring S] [nontrivial S] {P : polynomial R} (hmo : P.monic)
(f : R →+* S) : (P.map f).nat_degree = P.nat_degree :=
begin
refine le_antisymm (nat_degree_map_le _ _) (le_nat_degree_of_ne_zero _),
rw [coeff_map, monic.coeff_nat_degree hmo, ring_hom.map_one],
exact one_ne_zero
end
@[simp]
lemma monic.degree_map [semiring S] [nontrivial S] {P : polynomial R} (hmo : P.monic)
(f : R →+* S) : (P.map f).degree = P.degree :=
begin
by_cases hP : P = 0,
{ simp [hP] },
{ refine le_antisymm (degree_map_le _ _) _,
rw [degree_eq_nat_degree hP],
refine le_degree_of_ne_zero _,
rw [coeff_map, monic.coeff_nat_degree hmo, ring_hom.map_one],
exact one_ne_zero }
end
section injective
open function
variables [semiring S] {f : R →+* S} (hf : injective f)
include hf
lemma degree_map_eq_of_injective (p : R[X]) : degree (p.map f) = degree p :=
if h : p = 0 then by simp [h]
else degree_map_eq_of_leading_coeff_ne_zero _
(by rw [← f.map_zero]; exact mt hf.eq_iff.1
(mt leading_coeff_eq_zero.1 h))
lemma nat_degree_map_eq_of_injective (p : R[X]) :
nat_degree (p.map f) = nat_degree p :=
nat_degree_eq_of_degree_eq (degree_map_eq_of_injective hf p)
lemma leading_coeff_map' (p : R[X]) :
leading_coeff (p.map f) = f (leading_coeff p) :=
begin
unfold leading_coeff,
rw [coeff_map, nat_degree_map_eq_of_injective hf p],
end
lemma next_coeff_map (p : R[X]) :
(p.map f).next_coeff = f p.next_coeff :=
begin
unfold next_coeff,
rw nat_degree_map_eq_of_injective hf,
split_ifs; simp
end
lemma leading_coeff_of_injective (p : R[X]) :
leading_coeff (p.map f) = f (leading_coeff p) :=
begin
delta leading_coeff,
rw [coeff_map f, nat_degree_map_eq_of_injective hf p]
end
lemma monic_of_injective {p : R[X]} (hp : (p.map f).monic) : p.monic :=
begin
apply hf,
rw [← leading_coeff_of_injective hf, hp.leading_coeff, f.map_one]
end
end injective
end semiring
section ring
variables [ring R] {p : R[X]}
theorem monic_X_sub_C (x : R) : monic (X - C x) :=
by simpa only [sub_eq_add_neg, C_neg] using monic_X_add_C (-x)
theorem monic_X_pow_sub {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) - p) :=
by simpa [sub_eq_add_neg] using monic_X_pow_add (show degree (-p) ≤ n, by rwa ←degree_neg p at H)
/-- `X ^ n - a` is monic. -/
lemma monic_X_pow_sub_C {R : Type u} [ring R] (a : R) {n : ℕ} (h : n ≠ 0) : (X ^ n - C a).monic :=
begin
obtain ⟨k, hk⟩ := nat.exists_eq_succ_of_ne_zero h,
convert monic_X_pow_sub _,
exact le_trans degree_C_le nat.with_bot.coe_nonneg,
end
lemma not_is_unit_X_pow_sub_one (R : Type*) [comm_ring R] [nontrivial R] (n : ℕ) :
¬ is_unit (X ^ n - 1 : R[X]) :=
begin
intro h,
rcases eq_or_ne n 0 with rfl | hn,
{ simpa using h },
apply hn,
rwa [← @nat_degree_X_pow_sub_C _ _ _ n (1 : R),
eq_one_of_is_unit_of_monic (monic_X_pow_sub_C (1 : R) hn),
nat_degree_one]
end
lemma monic.sub_of_left {p q : R[X]} (hp : monic p) (hpq : degree q < degree p) :
monic (p - q) :=
by { rw sub_eq_add_neg, apply hp.add_of_left, rwa degree_neg }
lemma monic.sub_of_right {p q : R[X]}
(hq : q.leading_coeff = -1) (hpq : degree p < degree q) : monic (p - q) :=
have (-q).coeff (-q).nat_degree = 1 :=
by rw [nat_degree_neg, coeff_neg, show q.coeff q.nat_degree = -1, from hq, neg_neg],
by { rw sub_eq_add_neg, apply monic.add_of_right this, rwa degree_neg }
end ring
section nonzero_semiring
variables [semiring R] [nontrivial R] {p q : R[X]}
@[simp] lemma not_monic_zero : ¬monic (0 : R[X]) :=
not_monic_zero_iff.mp zero_ne_one
end nonzero_semiring
section not_zero_divisor
-- TODO: using gh-8537, rephrase lemmas that involve commutation around `*` using the op-ring
variables [semiring R] {p : R[X]}
lemma monic.mul_left_ne_zero (hp : monic p) {q : R[X]} (hq : q0) :
q * p ≠ 0 :=
begin
by_cases h : p = 1,
{ simpa [h] },
rw [ne.def, ←degree_eq_bot, hp.degree_mul, with_bot.add_eq_bot, not_or_distrib, degree_eq_bot],
refine ⟨hq, _⟩,
rw [←hp.degree_le_zero_iff_eq_one, not_le] at h,
refine (lt_trans _ h).ne',
simp
end
lemma monic.mul_right_ne_zero (hp : monic p) {q : R[X]} (hq : q0) :
p * q ≠ 0 :=
begin
by_cases h : p = 1,
{ simpa [h] },
rw [ne.def, ←degree_eq_bot, hp.degree_mul_comm, hp.degree_mul, with_bot.add_eq_bot,
not_or_distrib, degree_eq_bot],
refine ⟨hq, _⟩,
rw [←hp.degree_le_zero_iff_eq_one, not_le] at h,
refine (lt_trans _ h).ne',
simp
end
lemma monic.mul_nat_degree_lt_iff (h : monic p) {q : R[X]} :
(p * q).nat_degree < p.nat_degree ↔ p ≠ 1 ∧ q = 0 :=
begin
by_cases hq : q = 0,
{ suffices : 0 < p.nat_degree ↔ p.nat_degree ≠ 0,
{ simpa [hq, ←h.nat_degree_eq_zero_iff_eq_one] },
exact ⟨λ h, h.ne', λ h, lt_of_le_of_ne (nat.zero_le _) h.symm ⟩ },
{ simp [h.nat_degree_mul', hq] }
end
lemma monic.mul_right_eq_zero_iff (h : monic p) {q : R[X]} :
p * q = 0 ↔ q = 0 :=
begin
by_cases hq : q = 0;
simp [h.mul_right_ne_zero, hq]
end
lemma monic.mul_left_eq_zero_iff (h : monic p) {q : R[X]} :
q * p = 0 ↔ q = 0 :=
begin
by_cases hq : q = 0;
simp [h.mul_left_ne_zero, hq]
end
lemma monic.is_regular {R : Type*} [ring R] {p : R[X]} (hp : monic p) : is_regular p :=
begin
split,
{ intros q r h,
rw [←sub_eq_zero, ←hp.mul_right_eq_zero_iff, mul_sub, h, sub_self] },
{ intros q r h,
simp only at h,
rw [←sub_eq_zero, ←hp.mul_left_eq_zero_iff, sub_mul, h, sub_self] }
end
lemma degree_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R]
{k : S} (p : R[X]) (h : is_smul_regular R k) :
(k • p).degree = p.degree :=
begin
refine le_antisymm _ _,
{ rw degree_le_iff_coeff_zero,
intros m hm,
rw degree_lt_iff_coeff_zero at hm,
simp [hm m le_rfl] },
{ rw degree_le_iff_coeff_zero,
intros m hm,
rw degree_lt_iff_coeff_zero at hm,
refine h _,
simpa using hm m le_rfl },
end
lemma nat_degree_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R]
{k : S} (p : R[X]) (h : is_smul_regular R k) :
(k • p).nat_degree = p.nat_degree :=
begin
by_cases hp : p = 0,
{ simp [hp] },
rw [←with_bot.coe_eq_coe, ←degree_eq_nat_degree hp, ←degree_eq_nat_degree,
degree_smul_of_smul_regular p h],
contrapose! hp,
rw ←smul_zero k at hp,
exact h.polynomial hp
end
lemma leading_coeff_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R]
{k : S} (p : R[X]) (h : is_smul_regular R k) :
(k • p).leading_coeff = k • p.leading_coeff :=
by rw [leading_coeff, leading_coeff, coeff_smul, nat_degree_smul_of_smul_regular p h]
lemma monic_of_is_unit_leading_coeff_inv_smul (h : is_unit p.leading_coeff) :
monic (h.unit⁻¹ • p) :=
begin
rw [monic.def, leading_coeff_smul_of_smul_regular _ (is_smul_regular_of_group _), units.smul_def],
obtain ⟨k, hk⟩ := h,
simp only [←hk, smul_eq_mul, ←units.coe_mul, units.coe_eq_one, inv_mul_eq_iff_eq_mul],
simp [units.ext_iff, is_unit.unit_spec]
end
lemma is_unit_leading_coeff_mul_right_eq_zero_iff (h : is_unit p.leading_coeff) {q : R[X]} :
p * q = 0 ↔ q = 0 :=
begin
split,
{ intro hp,
rw ←smul_eq_zero_iff_eq (h.unit)⁻¹ at hp,
have : (h.unit)⁻¹ • (p * q) = ((h.unit)⁻¹ • p) * q,
{ ext,
simp only [units.smul_def, coeff_smul, coeff_mul, smul_eq_mul, mul_sum],
refine sum_congr rfl (λ x hx, _),
rw ←mul_assoc },
rwa [this, monic.mul_right_eq_zero_iff] at hp,
exact monic_of_is_unit_leading_coeff_inv_smul _ },
{ rintro rfl,
simp }
end
lemma is_unit_leading_coeff_mul_left_eq_zero_iff (h : is_unit p.leading_coeff) {q : R[X]} :
q * p = 0 ↔ q = 0 :=
begin
split,
{ intro hp,
replace hp := congr_arg (* C ↑(h.unit)⁻¹) hp,
simp only [zero_mul] at hp,
rwa [mul_assoc, monic.mul_left_eq_zero_iff] at hp,
refine monic_mul_C_of_leading_coeff_mul_eq_one _,
simp [units.mul_inv_eq_iff_eq_mul, is_unit.unit_spec] },
{ rintro rfl,
rw zero_mul }
end
end not_zero_divisor
end polynomial