Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Chris Hughes. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker | |
-/ | |
import data.polynomial.reverse | |
import algebra.associated | |
import algebra.regular.smul | |
/-! | |
# Theory of monic polynomials | |
We give several tools for proving that polynomials are monic, e.g. | |
`monic.mul`, `monic.map`, `monic.pow`. | |
-/ | |
noncomputable theory | |
open finset | |
open_locale big_operators classical polynomial | |
namespace polynomial | |
universes u v y | |
variables {R : Type u} {S : Type v} {a b : R} {m n : ℕ} {ι : Type y} | |
section semiring | |
variables [semiring R] {p q r : R[X]} | |
lemma monic_zero_iff_subsingleton : monic (0 : R[X]) ↔ subsingleton R := | |
subsingleton_iff_zero_eq_one | |
lemma not_monic_zero_iff : ¬ monic (0 : R[X]) ↔ (0 : R) ≠ 1 := | |
(monic_zero_iff_subsingleton.trans subsingleton_iff_zero_eq_one.symm).not | |
lemma monic_zero_iff_subsingleton' : | |
monic (0 : R[X]) ↔ (∀ f g : R[X], f = g) ∧ (∀ a b : R, a = b) := | |
polynomial.monic_zero_iff_subsingleton.trans ⟨by { introI, simp }, | |
λ h, subsingleton_iff.mpr h.2⟩ | |
lemma monic.as_sum (hp : p.monic) : | |
p = X^(p.nat_degree) + (∑ i in range p.nat_degree, C (p.coeff i) * X^i) := | |
begin | |
conv_lhs { rw [p.as_sum_range_C_mul_X_pow, sum_range_succ_comm] }, | |
suffices : C (p.coeff p.nat_degree) = 1, | |
{ rw [this, one_mul] }, | |
exact congr_arg C hp | |
end | |
lemma ne_zero_of_ne_zero_of_monic (hp : p ≠ 0) (hq : monic q) : q ≠ 0 := | |
begin | |
rintro rfl, | |
rw [monic.def, leading_coeff_zero] at hq, | |
rw [← mul_one p, ← C_1, ← hq, C_0, mul_zero] at hp, | |
exact hp rfl | |
end | |
lemma monic.map [semiring S] (f : R →+* S) (hp : monic p) : monic (p.map f) := | |
begin | |
nontriviality, | |
have : f (leading_coeff p) ≠ 0, | |
{ rw [show _ = _, from hp, f.map_one], | |
exact one_ne_zero, }, | |
rw [monic, leading_coeff, coeff_map], | |
suffices : p.coeff (map f p).nat_degree = 1, | |
{ simp [this], }, | |
rwa nat_degree_eq_of_degree_eq (degree_map_eq_of_leading_coeff_ne_zero f this), | |
end | |
lemma monic_C_mul_of_mul_leading_coeff_eq_one {b : R} (hp : b * p.leading_coeff = 1) : | |
monic (C b * p) := | |
by { nontriviality, rw [monic, leading_coeff_mul' _]; simp [leading_coeff_C b, hp] } | |
lemma monic_mul_C_of_leading_coeff_mul_eq_one {b : R} (hp : p.leading_coeff * b = 1) : | |
monic (p * C b) := | |
by { nontriviality, rw [monic, leading_coeff_mul' _]; simp [leading_coeff_C b, hp] } | |
theorem monic_of_degree_le (n : ℕ) (H1 : degree p ≤ n) (H2 : coeff p n = 1) : monic p := | |
decidable.by_cases | |
(assume H : degree p < n, eq_of_zero_eq_one | |
(H2 ▸ (coeff_eq_zero_of_degree_lt H).symm) _ _) | |
(assume H : ¬degree p < n, | |
by rwa [monic, leading_coeff, nat_degree, (lt_or_eq_of_le H1).resolve_left H]) | |
theorem monic_X_pow_add {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) + p) := | |
have H1 : degree p < n+1, from lt_of_le_of_lt H (with_bot.coe_lt_coe.2 (nat.lt_succ_self n)), | |
monic_of_degree_le (n+1) | |
(le_trans (degree_add_le _ _) (max_le (degree_X_pow_le _) (le_of_lt H1))) | |
(by rw [coeff_add, coeff_X_pow, if_pos rfl, coeff_eq_zero_of_degree_lt H1, add_zero]) | |
theorem monic_X_add_C (x : R) : monic (X + C x) := | |
pow_one (X : R[X]) ▸ monic_X_pow_add degree_C_le | |
lemma monic.mul (hp : monic p) (hq : monic q) : monic (p * q) := | |
if h0 : (0 : R) = 1 then by haveI := subsingleton_of_zero_eq_one h0; | |
exact subsingleton.elim _ _ | |
else | |
have leading_coeff p * leading_coeff q ≠ 0, by simp [monic.def.1 hp, monic.def.1 hq, ne.symm h0], | |
by rw [monic.def, leading_coeff_mul' this, monic.def.1 hp, monic.def.1 hq, one_mul] | |
lemma monic.pow (hp : monic p) : ∀ (n : ℕ), monic (p ^ n) | |
| 0 := monic_one | |
| (n+1) := by { rw pow_succ, exact hp.mul (monic.pow n) } | |
lemma monic.add_of_left (hp : monic p) (hpq : degree q < degree p) : | |
monic (p + q) := | |
by rwa [monic, add_comm, leading_coeff_add_of_degree_lt hpq] | |
lemma monic.add_of_right (hq : monic q) (hpq : degree p < degree q) : | |
monic (p + q) := | |
by rwa [monic, leading_coeff_add_of_degree_lt hpq] | |
lemma monic.of_mul_monic_left (hp : p.monic) (hpq : (p * q).monic) : q.monic := | |
begin | |
contrapose! hpq, | |
rw monic.def at hpq ⊢, | |
rwa leading_coeff_monic_mul hp, | |
end | |
lemma monic.of_mul_monic_right (hq : q.monic) (hpq : (p * q).monic) : p.monic := | |
begin | |
contrapose! hpq, | |
rw monic.def at hpq ⊢, | |
rwa leading_coeff_mul_monic hq, | |
end | |
namespace monic | |
@[simp] | |
lemma nat_degree_eq_zero_iff_eq_one {p : R[X]} (hp : p.monic) : | |
p.nat_degree = 0 ↔ p = 1 := | |
begin | |
split; intro h, | |
swap, { rw h, exact nat_degree_one }, | |
have : p = C (p.coeff 0), | |
{ rw ← polynomial.degree_le_zero_iff, | |
rwa polynomial.nat_degree_eq_zero_iff_degree_le_zero at h }, | |
rw this, convert C_1, rw ← h, apply hp, | |
end | |
@[simp] | |
lemma degree_le_zero_iff_eq_one {p : R[X]} (hp : p.monic) : | |
p.degree ≤ 0 ↔ p = 1 := | |
by rw [←hp.nat_degree_eq_zero_iff_eq_one, nat_degree_eq_zero_iff_degree_le_zero] | |
lemma nat_degree_mul {p q : R[X]} (hp : p.monic) (hq : q.monic) : | |
(p * q).nat_degree = p.nat_degree + q.nat_degree := | |
begin | |
nontriviality R, | |
apply nat_degree_mul', | |
simp [hp.leading_coeff, hq.leading_coeff] | |
end | |
lemma degree_mul_comm {p : R[X]} (hp : p.monic) (q : R[X]) : | |
(p * q).degree = (q * p).degree := | |
begin | |
by_cases h : q = 0, | |
{ simp [h] }, | |
rw [degree_mul', hp.degree_mul], | |
{ exact add_comm _ _ }, | |
{ rwa [hp.leading_coeff, one_mul, leading_coeff_ne_zero] } | |
end | |
lemma nat_degree_mul' {p q : R[X]} (hp : p.monic) (hq : q ≠ 0) : | |
(p * q).nat_degree = p.nat_degree + q.nat_degree := | |
begin | |
rw [nat_degree_mul', add_comm], | |
simpa [hp.leading_coeff, leading_coeff_ne_zero] | |
end | |
lemma nat_degree_mul_comm {p : R[X]} (hp : p.monic) (q : R[X]) : | |
(p * q).nat_degree = (q * p).nat_degree := | |
begin | |
by_cases h : q = 0, | |
{ simp [h] }, | |
rw [hp.nat_degree_mul' h, polynomial.nat_degree_mul', add_comm], | |
simpa [hp.leading_coeff, leading_coeff_ne_zero] | |
end | |
lemma next_coeff_mul {p q : R[X]} (hp : monic p) (hq : monic q) : | |
next_coeff (p * q) = next_coeff p + next_coeff q := | |
begin | |
nontriviality, | |
simp only [← coeff_one_reverse], | |
rw reverse_mul; | |
simp [coeff_mul, nat.antidiagonal, hp.leading_coeff, hq.leading_coeff, add_comm] | |
end | |
lemma eq_one_of_map_eq_one {S : Type*} [semiring S] [nontrivial S] | |
(f : R →+* S) (hp : p.monic) (map_eq : p.map f = 1) : p = 1 := | |
begin | |
nontriviality R, | |
have hdeg : p.degree = 0, | |
{ rw [← degree_map_eq_of_leading_coeff_ne_zero f _, map_eq, degree_one], | |
{ rw [hp.leading_coeff, f.map_one], | |
exact one_ne_zero } }, | |
have hndeg : p.nat_degree = 0 := | |
with_bot.coe_eq_coe.mp ((degree_eq_nat_degree hp.ne_zero).symm.trans hdeg), | |
convert eq_C_of_degree_eq_zero hdeg, | |
rw [← hndeg, ← polynomial.leading_coeff, hp.leading_coeff, C.map_one] | |
end | |
lemma nat_degree_pow (hp : p.monic) (n : ℕ) : | |
(p ^ n).nat_degree = n * p.nat_degree := | |
begin | |
induction n with n hn, | |
{ simp }, | |
{ rw [pow_succ, hp.nat_degree_mul (hp.pow n), hn], | |
ring } | |
end | |
end monic | |
@[simp] lemma nat_degree_pow_X_add_C [nontrivial R] (n : ℕ) (r : R) : | |
((X + C r) ^ n).nat_degree = n := | |
by rw [(monic_X_add_C r).nat_degree_pow, nat_degree_X_add_C, mul_one] | |
end semiring | |
section comm_semiring | |
variables [comm_semiring R] {p : R[X]} | |
lemma monic_multiset_prod_of_monic (t : multiset ι) (f : ι → R[X]) | |
(ht : ∀ i ∈ t, monic (f i)) : | |
monic (t.map f).prod := | |
begin | |
revert ht, | |
refine t.induction_on _ _, { simp }, | |
intros a t ih ht, | |
rw [multiset.map_cons, multiset.prod_cons], | |
exact (ht _ (multiset.mem_cons_self _ _)).mul (ih (λ _ hi, ht _ (multiset.mem_cons_of_mem hi))) | |
end | |
lemma monic_prod_of_monic (s : finset ι) (f : ι → R[X]) (hs : ∀ i ∈ s, monic (f i)) : | |
monic (∏ i in s, f i) := | |
monic_multiset_prod_of_monic s.1 f hs | |
lemma is_unit_C {x : R} : is_unit (C x) ↔ is_unit x := | |
begin | |
rw [is_unit_iff_dvd_one, is_unit_iff_dvd_one], | |
split, | |
{ rintros ⟨g, hg⟩, | |
replace hg := congr_arg (eval 0) hg, | |
rw [eval_one, eval_mul, eval_C] at hg, | |
exact ⟨g.eval 0, hg⟩ }, | |
{ rintros ⟨y, hy⟩, | |
exact ⟨C y, by rw [← C_mul, ← hy, C_1]⟩ } | |
end | |
lemma eq_one_of_is_unit_of_monic (hm : monic p) (hpu : is_unit p) : p = 1 := | |
have degree p ≤ 0, | |
from calc degree p ≤ degree (1 : R[X]) : | |
let ⟨u, hu⟩ := is_unit_iff_dvd_one.1 hpu in | |
if hu0 : u = 0 | |
then begin | |
rw [hu0, mul_zero] at hu, | |
rw [← mul_one p, hu, mul_zero], | |
simp | |
end | |
else have p.leading_coeff * u.leading_coeff ≠ 0, | |
by rw [hm.leading_coeff, one_mul, ne.def, leading_coeff_eq_zero]; | |
exact hu0, | |
by rw [hu, degree_mul' this]; | |
exact le_add_of_nonneg_right (degree_nonneg_iff_ne_zero.2 hu0) | |
... ≤ 0 : degree_one_le, | |
by rw [eq_C_of_degree_le_zero this, ← nat_degree_eq_zero_iff_degree_le_zero.2 this, | |
← leading_coeff, hm.leading_coeff, C_1] | |
lemma monic.next_coeff_multiset_prod (t : multiset ι) (f : ι → R[X]) | |
(h : ∀ i ∈ t, monic (f i)) : | |
next_coeff (t.map f).prod = (t.map (λ i, next_coeff (f i))).sum := | |
begin | |
revert h, | |
refine multiset.induction_on t _ (λ a t ih ht, _), | |
{ simp only [multiset.not_mem_zero, forall_prop_of_true, forall_prop_of_false, multiset.map_zero, | |
multiset.prod_zero, multiset.sum_zero, not_false_iff, forall_true_iff], | |
rw ← C_1, rw next_coeff_C_eq_zero }, | |
{ rw [multiset.map_cons, multiset.prod_cons, multiset.map_cons, multiset.sum_cons, | |
monic.next_coeff_mul, ih], | |
exacts [λ i hi, ht i (multiset.mem_cons_of_mem hi), ht a (multiset.mem_cons_self _ _), | |
monic_multiset_prod_of_monic _ _ (λ b bs, ht _ (multiset.mem_cons_of_mem bs))] } | |
end | |
lemma monic.next_coeff_prod (s : finset ι) (f : ι → R[X]) (h : ∀ i ∈ s, monic (f i)) : | |
next_coeff (∏ i in s, f i) = ∑ i in s, next_coeff (f i) := | |
monic.next_coeff_multiset_prod s.1 f h | |
end comm_semiring | |
section semiring | |
variables [semiring R] | |
@[simp] | |
lemma monic.nat_degree_map [semiring S] [nontrivial S] {P : polynomial R} (hmo : P.monic) | |
(f : R →+* S) : (P.map f).nat_degree = P.nat_degree := | |
begin | |
refine le_antisymm (nat_degree_map_le _ _) (le_nat_degree_of_ne_zero _), | |
rw [coeff_map, monic.coeff_nat_degree hmo, ring_hom.map_one], | |
exact one_ne_zero | |
end | |
@[simp] | |
lemma monic.degree_map [semiring S] [nontrivial S] {P : polynomial R} (hmo : P.monic) | |
(f : R →+* S) : (P.map f).degree = P.degree := | |
begin | |
by_cases hP : P = 0, | |
{ simp [hP] }, | |
{ refine le_antisymm (degree_map_le _ _) _, | |
rw [degree_eq_nat_degree hP], | |
refine le_degree_of_ne_zero _, | |
rw [coeff_map, monic.coeff_nat_degree hmo, ring_hom.map_one], | |
exact one_ne_zero } | |
end | |
section injective | |
open function | |
variables [semiring S] {f : R →+* S} (hf : injective f) | |
include hf | |
lemma degree_map_eq_of_injective (p : R[X]) : degree (p.map f) = degree p := | |
if h : p = 0 then by simp [h] | |
else degree_map_eq_of_leading_coeff_ne_zero _ | |
(by rw [← f.map_zero]; exact mt hf.eq_iff.1 | |
(mt leading_coeff_eq_zero.1 h)) | |
lemma nat_degree_map_eq_of_injective (p : R[X]) : | |
nat_degree (p.map f) = nat_degree p := | |
nat_degree_eq_of_degree_eq (degree_map_eq_of_injective hf p) | |
lemma leading_coeff_map' (p : R[X]) : | |
leading_coeff (p.map f) = f (leading_coeff p) := | |
begin | |
unfold leading_coeff, | |
rw [coeff_map, nat_degree_map_eq_of_injective hf p], | |
end | |
lemma next_coeff_map (p : R[X]) : | |
(p.map f).next_coeff = f p.next_coeff := | |
begin | |
unfold next_coeff, | |
rw nat_degree_map_eq_of_injective hf, | |
split_ifs; simp | |
end | |
lemma leading_coeff_of_injective (p : R[X]) : | |
leading_coeff (p.map f) = f (leading_coeff p) := | |
begin | |
delta leading_coeff, | |
rw [coeff_map f, nat_degree_map_eq_of_injective hf p] | |
end | |
lemma monic_of_injective {p : R[X]} (hp : (p.map f).monic) : p.monic := | |
begin | |
apply hf, | |
rw [← leading_coeff_of_injective hf, hp.leading_coeff, f.map_one] | |
end | |
end injective | |
end semiring | |
section ring | |
variables [ring R] {p : R[X]} | |
theorem monic_X_sub_C (x : R) : monic (X - C x) := | |
by simpa only [sub_eq_add_neg, C_neg] using monic_X_add_C (-x) | |
theorem monic_X_pow_sub {n : ℕ} (H : degree p ≤ n) : monic (X ^ (n+1) - p) := | |
by simpa [sub_eq_add_neg] using monic_X_pow_add (show degree (-p) ≤ n, by rwa ←degree_neg p at H) | |
/-- `X ^ n - a` is monic. -/ | |
lemma monic_X_pow_sub_C {R : Type u} [ring R] (a : R) {n : ℕ} (h : n ≠ 0) : (X ^ n - C a).monic := | |
begin | |
obtain ⟨k, hk⟩ := nat.exists_eq_succ_of_ne_zero h, | |
convert monic_X_pow_sub _, | |
exact le_trans degree_C_le nat.with_bot.coe_nonneg, | |
end | |
lemma not_is_unit_X_pow_sub_one (R : Type*) [comm_ring R] [nontrivial R] (n : ℕ) : | |
¬ is_unit (X ^ n - 1 : R[X]) := | |
begin | |
intro h, | |
rcases eq_or_ne n 0 with rfl | hn, | |
{ simpa using h }, | |
apply hn, | |
rwa [← @nat_degree_X_pow_sub_C _ _ _ n (1 : R), | |
eq_one_of_is_unit_of_monic (monic_X_pow_sub_C (1 : R) hn), | |
nat_degree_one] | |
end | |
lemma monic.sub_of_left {p q : R[X]} (hp : monic p) (hpq : degree q < degree p) : | |
monic (p - q) := | |
by { rw sub_eq_add_neg, apply hp.add_of_left, rwa degree_neg } | |
lemma monic.sub_of_right {p q : R[X]} | |
(hq : q.leading_coeff = -1) (hpq : degree p < degree q) : monic (p - q) := | |
have (-q).coeff (-q).nat_degree = 1 := | |
by rw [nat_degree_neg, coeff_neg, show q.coeff q.nat_degree = -1, from hq, neg_neg], | |
by { rw sub_eq_add_neg, apply monic.add_of_right this, rwa degree_neg } | |
end ring | |
section nonzero_semiring | |
variables [semiring R] [nontrivial R] {p q : R[X]} | |
@[simp] lemma not_monic_zero : ¬monic (0 : R[X]) := | |
not_monic_zero_iff.mp zero_ne_one | |
end nonzero_semiring | |
section not_zero_divisor | |
-- TODO: using gh-8537, rephrase lemmas that involve commutation around `*` using the op-ring | |
variables [semiring R] {p : R[X]} | |
lemma monic.mul_left_ne_zero (hp : monic p) {q : R[X]} (hq : q ≠ 0) : | |
q * p ≠ 0 := | |
begin | |
by_cases h : p = 1, | |
{ simpa [h] }, | |
rw [ne.def, ←degree_eq_bot, hp.degree_mul, with_bot.add_eq_bot, not_or_distrib, degree_eq_bot], | |
refine ⟨hq, _⟩, | |
rw [←hp.degree_le_zero_iff_eq_one, not_le] at h, | |
refine (lt_trans _ h).ne', | |
simp | |
end | |
lemma monic.mul_right_ne_zero (hp : monic p) {q : R[X]} (hq : q ≠ 0) : | |
p * q ≠ 0 := | |
begin | |
by_cases h : p = 1, | |
{ simpa [h] }, | |
rw [ne.def, ←degree_eq_bot, hp.degree_mul_comm, hp.degree_mul, with_bot.add_eq_bot, | |
not_or_distrib, degree_eq_bot], | |
refine ⟨hq, _⟩, | |
rw [←hp.degree_le_zero_iff_eq_one, not_le] at h, | |
refine (lt_trans _ h).ne', | |
simp | |
end | |
lemma monic.mul_nat_degree_lt_iff (h : monic p) {q : R[X]} : | |
(p * q).nat_degree < p.nat_degree ↔ p ≠ 1 ∧ q = 0 := | |
begin | |
by_cases hq : q = 0, | |
{ suffices : 0 < p.nat_degree ↔ p.nat_degree ≠ 0, | |
{ simpa [hq, ←h.nat_degree_eq_zero_iff_eq_one] }, | |
exact ⟨λ h, h.ne', λ h, lt_of_le_of_ne (nat.zero_le _) h.symm ⟩ }, | |
{ simp [h.nat_degree_mul', hq] } | |
end | |
lemma monic.mul_right_eq_zero_iff (h : monic p) {q : R[X]} : | |
p * q = 0 ↔ q = 0 := | |
begin | |
by_cases hq : q = 0; | |
simp [h.mul_right_ne_zero, hq] | |
end | |
lemma monic.mul_left_eq_zero_iff (h : monic p) {q : R[X]} : | |
q * p = 0 ↔ q = 0 := | |
begin | |
by_cases hq : q = 0; | |
simp [h.mul_left_ne_zero, hq] | |
end | |
lemma monic.is_regular {R : Type*} [ring R] {p : R[X]} (hp : monic p) : is_regular p := | |
begin | |
split, | |
{ intros q r h, | |
rw [←sub_eq_zero, ←hp.mul_right_eq_zero_iff, mul_sub, h, sub_self] }, | |
{ intros q r h, | |
simp only at h, | |
rw [←sub_eq_zero, ←hp.mul_left_eq_zero_iff, sub_mul, h, sub_self] } | |
end | |
lemma degree_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R] | |
{k : S} (p : R[X]) (h : is_smul_regular R k) : | |
(k • p).degree = p.degree := | |
begin | |
refine le_antisymm _ _, | |
{ rw degree_le_iff_coeff_zero, | |
intros m hm, | |
rw degree_lt_iff_coeff_zero at hm, | |
simp [hm m le_rfl] }, | |
{ rw degree_le_iff_coeff_zero, | |
intros m hm, | |
rw degree_lt_iff_coeff_zero at hm, | |
refine h _, | |
simpa using hm m le_rfl }, | |
end | |
lemma nat_degree_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R] | |
{k : S} (p : R[X]) (h : is_smul_regular R k) : | |
(k • p).nat_degree = p.nat_degree := | |
begin | |
by_cases hp : p = 0, | |
{ simp [hp] }, | |
rw [←with_bot.coe_eq_coe, ←degree_eq_nat_degree hp, ←degree_eq_nat_degree, | |
degree_smul_of_smul_regular p h], | |
contrapose! hp, | |
rw ←smul_zero k at hp, | |
exact h.polynomial hp | |
end | |
lemma leading_coeff_smul_of_smul_regular {S : Type*} [monoid S] [distrib_mul_action S R] | |
{k : S} (p : R[X]) (h : is_smul_regular R k) : | |
(k • p).leading_coeff = k • p.leading_coeff := | |
by rw [leading_coeff, leading_coeff, coeff_smul, nat_degree_smul_of_smul_regular p h] | |
lemma monic_of_is_unit_leading_coeff_inv_smul (h : is_unit p.leading_coeff) : | |
monic (h.unit⁻¹ • p) := | |
begin | |
rw [monic.def, leading_coeff_smul_of_smul_regular _ (is_smul_regular_of_group _), units.smul_def], | |
obtain ⟨k, hk⟩ := h, | |
simp only [←hk, smul_eq_mul, ←units.coe_mul, units.coe_eq_one, inv_mul_eq_iff_eq_mul], | |
simp [units.ext_iff, is_unit.unit_spec] | |
end | |
lemma is_unit_leading_coeff_mul_right_eq_zero_iff (h : is_unit p.leading_coeff) {q : R[X]} : | |
p * q = 0 ↔ q = 0 := | |
begin | |
split, | |
{ intro hp, | |
rw ←smul_eq_zero_iff_eq (h.unit)⁻¹ at hp, | |
have : (h.unit)⁻¹ • (p * q) = ((h.unit)⁻¹ • p) * q, | |
{ ext, | |
simp only [units.smul_def, coeff_smul, coeff_mul, smul_eq_mul, mul_sum], | |
refine sum_congr rfl (λ x hx, _), | |
rw ←mul_assoc }, | |
rwa [this, monic.mul_right_eq_zero_iff] at hp, | |
exact monic_of_is_unit_leading_coeff_inv_smul _ }, | |
{ rintro rfl, | |
simp } | |
end | |
lemma is_unit_leading_coeff_mul_left_eq_zero_iff (h : is_unit p.leading_coeff) {q : R[X]} : | |
q * p = 0 ↔ q = 0 := | |
begin | |
split, | |
{ intro hp, | |
replace hp := congr_arg (* C ↑(h.unit)⁻¹) hp, | |
simp only [zero_mul] at hp, | |
rwa [mul_assoc, monic.mul_left_eq_zero_iff] at hp, | |
refine monic_mul_C_of_leading_coeff_mul_eq_one _, | |
simp [units.mul_inv_eq_iff_eq_mul, is_unit.unit_spec] }, | |
{ rintro rfl, | |
rw zero_mul } | |
end | |
end not_zero_divisor | |
end polynomial | |