Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.24 kB
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import ring_theory.polynomial.pochhammer
/-!
# Cast of factorials
This file allows calculating factorials (including ascending and descending ones) as elements of a
semiring.
This is particularly crucial for `nat.desc_factorial` as substraction on `ℕ` does **not** correspond
to substraction on a general semiring. For example, we can't rely on existing cast lemmas to prove
`↑(a.desc_factorial 2) = ↑a * (↑a - 1)`. We must use the fact that, whenever `↑(a - 1)` is not equal
to `↑a - 1`, the other factor is `0` anyway.
-/
open_locale nat
variables (S : Type*)
namespace nat
section semiring
variables [semiring S] (a b : ℕ)
lemma cast_asc_factorial :
(a.asc_factorial b : S) = (pochhammer S b).eval (a + 1) :=
by rw [←pochhammer_nat_eq_asc_factorial, pochhammer_eval_cast, nat.cast_add, nat.cast_one]
lemma cast_desc_factorial :
(a.desc_factorial b : S) = (pochhammer S b).eval (a - (b - 1) : ℕ) :=
begin
rw [←pochhammer_eval_cast, pochhammer_nat_eq_desc_factorial],
cases b,
{ simp_rw desc_factorial_zero },
simp_rw [add_succ, succ_sub_one],
obtain h | h := le_total a b,
{ rw [desc_factorial_of_lt (lt_succ_of_le h), desc_factorial_of_lt (lt_succ_of_le _)],
rw [tsub_eq_zero_iff_le.mpr h, zero_add] },
{ rw tsub_add_cancel_of_le h }
end
lemma cast_factorial :
(a! : S) = (pochhammer S a).eval 1 :=
by rw [←zero_asc_factorial, cast_asc_factorial, cast_zero, zero_add]
end semiring
section ring
variables [ring S] (a b : ℕ)
/-- Convenience lemma. The `a - 1` is not using truncated substraction, as opposed to the definition
of `nat.desc_factorial` as a natural. -/
lemma cast_desc_factorial_two :
(a.desc_factorial 2 : S) = a * (a - 1) :=
begin
rw cast_desc_factorial,
cases a,
{ rw [zero_tsub, cast_zero, pochhammer_ne_zero_eval_zero _ (two_ne_zero), zero_mul] },
{ rw [succ_sub_succ, tsub_zero, cast_succ, add_sub_cancel, pochhammer_succ_right,
pochhammer_one, polynomial.X_mul, polynomial.eval_mul_X, polynomial.eval_add,
polynomial.eval_X, cast_one, polynomial.eval_one] }
end
end ring
end nat