Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 YaΓ«l Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: YaΓ«l Dillies | |
-/ | |
import data.finset.card | |
import data.multiset.sum | |
/-! | |
# Disjoint sum of finsets | |
This file defines the disjoint sum of two finsets as `finset (Ξ± β Ξ²)`. Beware not to confuse with | |
the `finset.sum` operation which computes the additive sum. | |
## Main declarations | |
* `finset.disj_sum`: `s.disj_sum t` is the disjoint sum of `s` and `t`. | |
-/ | |
open function multiset sum | |
namespace finset | |
variables {Ξ± Ξ² : Type*} (s : finset Ξ±) (t : finset Ξ²) | |
/-- Disjoint sum of finsets. -/ | |
def disj_sum : finset (Ξ± β Ξ²) := β¨s.1.disj_sum t.1, s.2.disj_sum t.2β© | |
@[simp] lemma val_disj_sum : (s.disj_sum t).1 = s.1.disj_sum t.1 := rfl | |
@[simp] lemma empty_disj_sum : (β : finset Ξ±).disj_sum t = t.map embedding.inr := | |
val_inj.1 $ multiset.zero_disj_sum _ | |
@[simp] lemma disj_sum_empty : s.disj_sum (β : finset Ξ²) = s.map embedding.inl := | |
val_inj.1 $ multiset.disj_sum_zero _ | |
@[simp] lemma card_disj_sum : (s.disj_sum t).card = s.card + t.card := multiset.card_disj_sum _ _ | |
variables {s t} {sβ sβ : finset Ξ±} {tβ tβ : finset Ξ²} {a : Ξ±} {b : Ξ²} {x : Ξ± β Ξ²} | |
lemma mem_disj_sum : x β s.disj_sum t β (β a, a β s β§ inl a = x) β¨ β b, b β t β§ inr b = x := | |
multiset.mem_disj_sum | |
@[simp] lemma inl_mem_disj_sum : inl a β s.disj_sum t β a β s := inl_mem_disj_sum | |
@[simp] lemma inr_mem_disj_sum : inr b β s.disj_sum t β b β t := inr_mem_disj_sum | |
lemma disj_sum_mono (hs : sβ β sβ) (ht : tβ β tβ) : sβ.disj_sum tβ β sβ.disj_sum tβ := | |
val_le_iff.1 $ disj_sum_mono (val_le_iff.2 hs) (val_le_iff.2 ht) | |
lemma disj_sum_mono_left (t : finset Ξ²) : monotone (Ξ» s : finset Ξ±, s.disj_sum t) := | |
Ξ» sβ sβ hs, disj_sum_mono hs subset.rfl | |
lemma disj_sum_mono_right (s : finset Ξ±) : monotone (s.disj_sum : finset Ξ² β finset (Ξ± β Ξ²)) := | |
Ξ» tβ tβ, disj_sum_mono subset.rfl | |
lemma disj_sum_ssubset_disj_sum_of_ssubset_of_subset (hs : sβ β sβ) (ht : tβ β tβ) : | |
sβ.disj_sum tβ β sβ.disj_sum tβ := | |
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_lt_of_le (val_lt_iff.2 hs) (val_le_iff.2 ht) | |
lemma disj_sum_ssubset_disj_sum_of_subset_of_ssubset (hs : sβ β sβ) (ht : tβ β tβ) : | |
sβ.disj_sum tβ β sβ.disj_sum tβ := | |
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_le_of_lt (val_le_iff.2 hs) (val_lt_iff.2 ht) | |
lemma disj_sum_strict_mono_left (t : finset Ξ²) : strict_mono (Ξ» s : finset Ξ±, s.disj_sum t) := | |
Ξ» sβ sβ hs, disj_sum_ssubset_disj_sum_of_ssubset_of_subset hs subset.rfl | |
lemma disj_sum_strict_mono_right (s : finset Ξ±) : | |
strict_mono (s.disj_sum : finset Ξ² β finset (Ξ± β Ξ²)) := | |
Ξ» sβ sβ, disj_sum_ssubset_disj_sum_of_subset_of_ssubset subset.rfl | |
end finset | |