Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.82 kB
/-
Copyright (c) 2022 YaΓ«l Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: YaΓ«l Dillies
-/
import data.finset.card
import data.multiset.sum
/-!
# Disjoint sum of finsets
This file defines the disjoint sum of two finsets as `finset (Ξ± βŠ• Ξ²)`. Beware not to confuse with
the `finset.sum` operation which computes the additive sum.
## Main declarations
* `finset.disj_sum`: `s.disj_sum t` is the disjoint sum of `s` and `t`.
-/
open function multiset sum
namespace finset
variables {Ξ± Ξ² : Type*} (s : finset Ξ±) (t : finset Ξ²)
/-- Disjoint sum of finsets. -/
def disj_sum : finset (Ξ± βŠ• Ξ²) := ⟨s.1.disj_sum t.1, s.2.disj_sum t.2⟩
@[simp] lemma val_disj_sum : (s.disj_sum t).1 = s.1.disj_sum t.1 := rfl
@[simp] lemma empty_disj_sum : (βˆ… : finset Ξ±).disj_sum t = t.map embedding.inr :=
val_inj.1 $ multiset.zero_disj_sum _
@[simp] lemma disj_sum_empty : s.disj_sum (βˆ… : finset Ξ²) = s.map embedding.inl :=
val_inj.1 $ multiset.disj_sum_zero _
@[simp] lemma card_disj_sum : (s.disj_sum t).card = s.card + t.card := multiset.card_disj_sum _ _
variables {s t} {s₁ sβ‚‚ : finset Ξ±} {t₁ tβ‚‚ : finset Ξ²} {a : Ξ±} {b : Ξ²} {x : Ξ± βŠ• Ξ²}
lemma mem_disj_sum : x ∈ s.disj_sum t ↔ (βˆƒ a, a ∈ s ∧ inl a = x) ∨ βˆƒ b, b ∈ t ∧ inr b = x :=
multiset.mem_disj_sum
@[simp] lemma inl_mem_disj_sum : inl a ∈ s.disj_sum t ↔ a ∈ s := inl_mem_disj_sum
@[simp] lemma inr_mem_disj_sum : inr b ∈ s.disj_sum t ↔ b ∈ t := inr_mem_disj_sum
lemma disj_sum_mono (hs : s₁ βŠ† sβ‚‚) (ht : t₁ βŠ† tβ‚‚) : s₁.disj_sum t₁ βŠ† sβ‚‚.disj_sum tβ‚‚ :=
val_le_iff.1 $ disj_sum_mono (val_le_iff.2 hs) (val_le_iff.2 ht)
lemma disj_sum_mono_left (t : finset Ξ²) : monotone (Ξ» s : finset Ξ±, s.disj_sum t) :=
Ξ» s₁ sβ‚‚ hs, disj_sum_mono hs subset.rfl
lemma disj_sum_mono_right (s : finset Ξ±) : monotone (s.disj_sum : finset Ξ² β†’ finset (Ξ± βŠ• Ξ²)) :=
Ξ» t₁ tβ‚‚, disj_sum_mono subset.rfl
lemma disj_sum_ssubset_disj_sum_of_ssubset_of_subset (hs : s₁ βŠ‚ sβ‚‚) (ht : t₁ βŠ† tβ‚‚) :
s₁.disj_sum t₁ βŠ‚ sβ‚‚.disj_sum tβ‚‚ :=
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_lt_of_le (val_lt_iff.2 hs) (val_le_iff.2 ht)
lemma disj_sum_ssubset_disj_sum_of_subset_of_ssubset (hs : s₁ βŠ† sβ‚‚) (ht : t₁ βŠ‚ tβ‚‚) :
s₁.disj_sum t₁ βŠ‚ sβ‚‚.disj_sum tβ‚‚ :=
val_lt_iff.1 $ disj_sum_lt_disj_sum_of_le_of_lt (val_le_iff.2 hs) (val_lt_iff.2 ht)
lemma disj_sum_strict_mono_left (t : finset Ξ²) : strict_mono (Ξ» s : finset Ξ±, s.disj_sum t) :=
Ξ» s₁ sβ‚‚ hs, disj_sum_ssubset_disj_sum_of_ssubset_of_subset hs subset.rfl
lemma disj_sum_strict_mono_right (s : finset Ξ±) :
strict_mono (s.disj_sum : finset Ξ² β†’ finset (Ξ± βŠ• Ξ²)) :=
Ξ» s₁ sβ‚‚, disj_sum_ssubset_disj_sum_of_subset_of_ssubset subset.rfl
end finset