Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import data.finset.card | |
import data.multiset.nat_antidiagonal | |
/-! | |
# Antidiagonals in ℕ × ℕ as finsets | |
This file defines the antidiagonals of ℕ × ℕ as finsets: the `n`-th antidiagonal is the finset of | |
pairs `(i, j)` such that `i + j = n`. This is useful for polynomial multiplication and more | |
generally for sums going from `0` to `n`. | |
## Notes | |
This refines files `data.list.nat_antidiagonal` and `data.multiset.nat_antidiagonal`. | |
-/ | |
namespace finset | |
namespace nat | |
/-- The antidiagonal of a natural number `n` is | |
the finset of pairs `(i, j)` such that `i + j = n`. -/ | |
def antidiagonal (n : ℕ) : finset (ℕ × ℕ) := | |
⟨multiset.nat.antidiagonal n, multiset.nat.nodup_antidiagonal n⟩ | |
/-- A pair (i, j) is contained in the antidiagonal of `n` if and only if `i + j = n`. -/ | |
@[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} : | |
x ∈ antidiagonal n ↔ x.1 + x.2 = n := | |
by rw [antidiagonal, mem_def, multiset.nat.mem_antidiagonal] | |
/-- The cardinality of the antidiagonal of `n` is `n + 1`. -/ | |
@[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 := | |
by simp [antidiagonal] | |
/-- The antidiagonal of `0` is the list `[(0, 0)]` -/ | |
@[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} := | |
rfl | |
lemma antidiagonal_succ (n : ℕ) : | |
antidiagonal (n + 1) = cons (0, n + 1) ((antidiagonal n).map | |
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ (function.embedding.refl _))) | |
(by simp) := | |
begin | |
apply eq_of_veq, | |
rw [cons_val, map_val], | |
{ apply multiset.nat.antidiagonal_succ }, | |
end | |
lemma antidiagonal_succ' (n : ℕ) : | |
antidiagonal (n + 1) = cons (n + 1, 0) ((antidiagonal n).map | |
(function.embedding.prod_map (function.embedding.refl _) ⟨nat.succ, nat.succ_injective⟩)) | |
(by simp) := | |
begin | |
apply eq_of_veq, | |
rw [cons_val, map_val], | |
exact multiset.nat.antidiagonal_succ', | |
end | |
lemma antidiagonal_succ_succ' {n : ℕ} : | |
antidiagonal (n + 2) = | |
cons (0, n + 2) | |
(cons (n + 2, 0) ((antidiagonal n).map | |
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ ⟨nat.succ, nat.succ_injective⟩)) | |
$ by simp) (by simp) := | |
by { simp_rw [antidiagonal_succ (n + 1), antidiagonal_succ', finset.map_cons, map_map], refl } | |
lemma map_swap_antidiagonal {n : ℕ} : | |
(antidiagonal n).map ⟨prod.swap, prod.swap_right_inverse.injective⟩ = antidiagonal n := | |
eq_of_veq $ by simp [antidiagonal, multiset.nat.map_swap_antidiagonal] | |
/-- A point in the antidiagonal is determined by its first co-ordinate. -/ | |
lemma antidiagonal_congr {n : ℕ} {p q : ℕ × ℕ} (hp : p ∈ antidiagonal n) | |
(hq : q ∈ antidiagonal n) : p = q ↔ p.fst = q.fst := | |
begin | |
refine ⟨congr_arg prod.fst, (λ h, prod.ext h ((add_right_inj q.fst).mp _))⟩, | |
rw mem_antidiagonal at hp hq, | |
rw [hq, ← h, hp], | |
end | |
lemma antidiagonal.fst_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) : | |
kl.1 ≤ n := | |
begin | |
rw le_iff_exists_add, | |
use kl.2, | |
rwa [mem_antidiagonal, eq_comm] at hlk | |
end | |
lemma antidiagonal.snd_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) : | |
kl.2 ≤ n := | |
begin | |
rw le_iff_exists_add, | |
use kl.1, | |
rwa [mem_antidiagonal, eq_comm, add_comm] at hlk | |
end | |
lemma filter_fst_eq_antidiagonal (n m : ℕ) : | |
filter (λ x : ℕ × ℕ, x.fst = m) (antidiagonal n) = if m ≤ n then {(m, n - m)} else ∅ := | |
begin | |
ext ⟨x, y⟩, | |
simp only [mem_filter, nat.mem_antidiagonal], | |
split_ifs with h h, | |
{ simp [and_comm, eq_tsub_iff_add_eq_of_le h, add_comm] {contextual := tt} }, | |
{ rw not_le at h, | |
simp only [not_mem_empty, iff_false, not_and], | |
exact λ hn, ne_of_lt (lt_of_le_of_lt (le_self_add.trans hn.le) h) } | |
end | |
lemma filter_snd_eq_antidiagonal (n m : ℕ) : | |
filter (λ x : ℕ × ℕ, x.snd = m) (antidiagonal n) = if m ≤ n then {(n - m, m)} else ∅ := | |
begin | |
have : (λ (x : ℕ × ℕ), x.snd = m) ∘ prod.swap = (λ (x : ℕ × ℕ), x.fst = m), | |
{ ext, simp }, | |
rw ←map_swap_antidiagonal, | |
simp [map_filter, this, filter_fst_eq_antidiagonal, apply_ite (finset.map _)] | |
end | |
section equiv_prod | |
/-- The disjoint union of antidiagonals `Σ (n : ℕ), antidiagonal n` is equivalent to the product | |
`ℕ × ℕ`. This is such an equivalence, obtained by mapping `(n, (k, l))` to `(k, l)`. -/ | |
@[simps] def sigma_antidiagonal_equiv_prod : (Σ (n : ℕ), antidiagonal n) ≃ ℕ × ℕ := | |
{ to_fun := λ x, x.2, | |
inv_fun := λ x, ⟨x.1 + x.2, x, mem_antidiagonal.mpr rfl⟩, | |
left_inv := | |
begin | |
rintros ⟨n, ⟨k, l⟩, h⟩, | |
rw mem_antidiagonal at h, | |
exact sigma.subtype_ext h rfl, | |
end, | |
right_inv := λ x, rfl } | |
end equiv_prod | |
end nat | |
end finset | |