Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /data /finset /nat_antidiagonal.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.8 kB
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.finset.card
import data.multiset.nat_antidiagonal
/-!
# Antidiagonals in ℕ × ℕ as finsets
This file defines the antidiagonals of ℕ × ℕ as finsets: the `n`-th antidiagonal is the finset of
pairs `(i, j)` such that `i + j = n`. This is useful for polynomial multiplication and more
generally for sums going from `0` to `n`.
## Notes
This refines files `data.list.nat_antidiagonal` and `data.multiset.nat_antidiagonal`.
-/
namespace finset
namespace nat
/-- The antidiagonal of a natural number `n` is
the finset of pairs `(i, j)` such that `i + j = n`. -/
def antidiagonal (n : ℕ) : finset (ℕ × ℕ) :=
⟨multiset.nat.antidiagonal n, multiset.nat.nodup_antidiagonal n⟩
/-- A pair (i, j) is contained in the antidiagonal of `n` if and only if `i + j = n`. -/
@[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} :
x ∈ antidiagonal n ↔ x.1 + x.2 = n :=
by rw [antidiagonal, mem_def, multiset.nat.mem_antidiagonal]
/-- The cardinality of the antidiagonal of `n` is `n + 1`. -/
@[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 :=
by simp [antidiagonal]
/-- The antidiagonal of `0` is the list `[(0, 0)]` -/
@[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} :=
rfl
lemma antidiagonal_succ (n : ℕ) :
antidiagonal (n + 1) = cons (0, n + 1) ((antidiagonal n).map
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ (function.embedding.refl _)))
(by simp) :=
begin
apply eq_of_veq,
rw [cons_val, map_val],
{ apply multiset.nat.antidiagonal_succ },
end
lemma antidiagonal_succ' (n : ℕ) :
antidiagonal (n + 1) = cons (n + 1, 0) ((antidiagonal n).map
(function.embedding.prod_map (function.embedding.refl _) ⟨nat.succ, nat.succ_injective⟩))
(by simp) :=
begin
apply eq_of_veq,
rw [cons_val, map_val],
exact multiset.nat.antidiagonal_succ',
end
lemma antidiagonal_succ_succ' {n : ℕ} :
antidiagonal (n + 2) =
cons (0, n + 2)
(cons (n + 2, 0) ((antidiagonal n).map
(function.embedding.prod_map ⟨nat.succ, nat.succ_injective⟩ ⟨nat.succ, nat.succ_injective⟩))
$ by simp) (by simp) :=
by { simp_rw [antidiagonal_succ (n + 1), antidiagonal_succ', finset.map_cons, map_map], refl }
lemma map_swap_antidiagonal {n : ℕ} :
(antidiagonal n).map ⟨prod.swap, prod.swap_right_inverse.injective⟩ = antidiagonal n :=
eq_of_veq $ by simp [antidiagonal, multiset.nat.map_swap_antidiagonal]
/-- A point in the antidiagonal is determined by its first co-ordinate. -/
lemma antidiagonal_congr {n : ℕ} {p q : ℕ × ℕ} (hp : p ∈ antidiagonal n)
(hq : q ∈ antidiagonal n) : p = q ↔ p.fst = q.fst :=
begin
refine ⟨congr_arg prod.fst, (λ h, prod.ext h ((add_right_inj q.fst).mp _))⟩,
rw mem_antidiagonal at hp hq,
rw [hq, ← h, hp],
end
lemma antidiagonal.fst_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
kl.1 ≤ n :=
begin
rw le_iff_exists_add,
use kl.2,
rwa [mem_antidiagonal, eq_comm] at hlk
end
lemma antidiagonal.snd_le {n : ℕ} {kl : ℕ × ℕ} (hlk : kl ∈ antidiagonal n) :
kl.2 ≤ n :=
begin
rw le_iff_exists_add,
use kl.1,
rwa [mem_antidiagonal, eq_comm, add_comm] at hlk
end
lemma filter_fst_eq_antidiagonal (n m : ℕ) :
filter (λ x : ℕ × ℕ, x.fst = m) (antidiagonal n) = if m ≤ n then {(m, n - m)} else ∅ :=
begin
ext ⟨x, y⟩,
simp only [mem_filter, nat.mem_antidiagonal],
split_ifs with h h,
{ simp [and_comm, eq_tsub_iff_add_eq_of_le h, add_comm] {contextual := tt} },
{ rw not_le at h,
simp only [not_mem_empty, iff_false, not_and],
exact λ hn, ne_of_lt (lt_of_le_of_lt (le_self_add.trans hn.le) h) }
end
lemma filter_snd_eq_antidiagonal (n m : ℕ) :
filter (λ x : ℕ × ℕ, x.snd = m) (antidiagonal n) = if m ≤ n then {(n - m, m)} else ∅ :=
begin
have : (λ (x : ℕ × ℕ), x.snd = m) ∘ prod.swap = (λ (x : ℕ × ℕ), x.fst = m),
{ ext, simp },
rw ←map_swap_antidiagonal,
simp [map_filter, this, filter_fst_eq_antidiagonal, apply_ite (finset.map _)]
end
section equiv_prod
/-- The disjoint union of antidiagonals `Σ (n : ℕ), antidiagonal n` is equivalent to the product
`ℕ × ℕ`. This is such an equivalence, obtained by mapping `(n, (k, l))` to `(k, l)`. -/
@[simps] def sigma_antidiagonal_equiv_prod : (Σ (n : ℕ), antidiagonal n) ≃ ℕ × ℕ :=
{ to_fun := λ x, x.2,
inv_fun := λ x, ⟨x.1 + x.2, x, mem_antidiagonal.mpr rfl⟩,
left_inv :=
begin
rintros ⟨n, ⟨k, l⟩, h⟩,
rw mem_antidiagonal at h,
exact sigma.subtype_ext h rfl,
end,
right_inv := λ x, rfl }
end equiv_prod
end nat
end finset