Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
5.77 kB
/-
Copyright (c) 2021 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Scott Morrison
-/
import data.finset.lattice
import data.multiset.functor
/-!
# Functoriality of `finset`
This file defines the functor structure of `finset`.
## TODO
Currently, all instances are classical because the functor classes want to run over all types. If
instead we could state that a functor is lawful/applicative/traversable... between two given types,
then we could provide the instances for types with decidable equality.
-/
universes u
open function
namespace finset
/-! ### Functor -/
section functor
variables {α β : Type u} [Π P, decidable P]
/-- Because `finset.image` requires a `decidable_eq` instance for the target type, we can only
construct `functor finset` when working classically. -/
instance : functor finset :=
{ map := λ α β f s, s.image f }
instance : is_lawful_functor finset :=
{ id_map := λ α s, image_id,
comp_map := λ α β γ f g s, image_image.symm }
@[simp] lemma fmap_def {s : finset α} (f : α → β) : f <$> s = s.image f := rfl
end functor
/-! ### Pure -/
instance : has_pure finset := ⟨λ α x, {x}⟩
@[simp] lemma pure_def {α} : (pure : α → finset α) = singleton := rfl
/-! ### Applicative functor -/
section applicative
variables {α β : Type u} [Π P, decidable P]
instance : applicative finset :=
{ seq := λ α β t s, t.sup (λ f, s.image f),
seq_left := λ α β s t, if t = ∅ then ∅ else s,
seq_right := λ α β s t, if s = ∅ then ∅ else t,
.. finset.functor,
.. finset.has_pure }
@[simp] lemma seq_def (s : finset α) (t : finset (α → β)) : t <*> s = t.sup (λ f, s.image f) := rfl
@[simp] lemma seq_left_def (s : finset α) (t : finset β) : s <* t = if t = ∅ then ∅ else s := rfl
@[simp] lemma seq_right_def (s : finset α) (t : finset β) : s *> t = if s = ∅ then ∅ else t := rfl
instance : is_lawful_applicative finset :=
{ seq_left_eq := λ α β s t, begin
rw [seq_def, fmap_def, seq_left_def],
obtain rfl | ht := t.eq_empty_or_nonempty,
{ simp_rw [if_pos rfl, image_empty], exact (sup_bot _).symm },
{ ext a,
rw [if_neg ht.ne_empty, mem_sup],
refine ⟨λ ha, ⟨const β a, mem_image_of_mem _ ha, mem_image_const_self.2 ht⟩, _⟩,
rintro ⟨f, hf, ha⟩,
rw mem_image at hf ha,
obtain ⟨b, hb, rfl⟩ := hf,
obtain ⟨_, _, rfl⟩ := ha,
exact hb }
end,
seq_right_eq := λ α β s t, begin
rw [seq_def, fmap_def, seq_right_def],
obtain rfl | hs := s.eq_empty_or_nonempty,
{ rw [if_pos rfl, image_empty, sup_empty, bot_eq_empty] },
{ ext a,
rw [if_neg hs.ne_empty, mem_sup],
refine ⟨λ ha, ⟨id, mem_image_const_self.2 hs, by rwa image_id⟩, _⟩,
rintro ⟨f, hf, ha⟩,
rw mem_image at hf ha,
obtain ⟨b, hb, rfl⟩ := ha,
obtain ⟨_, _, rfl⟩ := hf,
exact hb }
end,
pure_seq_eq_map := λ α β f s, sup_singleton,
map_pure := λ α β f a, image_singleton _ _,
seq_pure := λ α β s a, sup_singleton'' _ _,
seq_assoc := λ α β γ s t u, begin
ext a,
simp_rw [seq_def, fmap_def],
simp only [exists_prop, mem_sup, mem_image],
split,
{ rintro ⟨g, hg, b, ⟨f, hf, a, ha, rfl⟩, rfl⟩,
exact ⟨g ∘ f, ⟨comp g, ⟨g, hg, rfl⟩, f, hf, rfl⟩, a, ha, rfl⟩ },
{ rintro ⟨c, ⟨_, ⟨g, hg, rfl⟩, f, hf, rfl⟩, a, ha, rfl⟩,
exact ⟨g, hg, f a, ⟨f, hf, a, ha, rfl⟩, rfl⟩ }
end,
.. finset.is_lawful_functor }
instance : is_comm_applicative finset :=
{ commutative_prod := λ α β s t, begin
simp_rw [seq_def, fmap_def, sup_image, sup_eq_bUnion],
change s.bUnion (λ a, t.image $ λ b, (a, b)) = t.bUnion (λ b, s.image $ λ a, (a, b)),
transitivity s ×ˢ t;
[rw product_eq_bUnion, rw product_eq_bUnion_right]; congr; ext; simp_rw mem_image,
end,
.. finset.is_lawful_applicative }
end applicative
/-! ### Monad -/
section monad
variables [Π P, decidable P]
instance : monad finset :=
{ bind := λ α β, @sup _ _ _ _,
.. finset.applicative }
@[simp] lemma bind_def {α β} : (>>=) = @sup (finset α) β _ _ := rfl
instance : is_lawful_monad finset :=
{ bind_pure_comp_eq_map := λ α β f s, sup_singleton'' _ _,
bind_map_eq_seq := λ α β t s, rfl,
pure_bind := λ α β t s, sup_singleton,
bind_assoc := λ α β γ s f g, by { convert sup_bUnion _ _, exact sup_eq_bUnion _ _ },
.. finset.is_lawful_applicative }
end monad
/-! ### Alternative functor -/
section alternative
variables [Π P, decidable P]
instance : alternative finset :=
{ orelse := λ α, (∪),
failure := λ α, ∅,
.. finset.applicative }
end alternative
/-! ### Traversable functor -/
section traversable
variables {α β γ : Type u} {F G : Type u → Type u} [applicative F] [applicative G]
[is_comm_applicative F] [is_comm_applicative G]
/-- Traverse function for `finset`. -/
def traverse [decidable_eq β] (f : α → F β) (s : finset α) : F (finset β) :=
multiset.to_finset <$> multiset.traverse f s.1
@[simp] lemma id_traverse [decidable_eq α] (s : finset α) : traverse id.mk s = s :=
by { rw [traverse, multiset.id_traverse], exact s.val_to_finset }
open_locale classical
@[simp] lemma map_comp_coe (h : α → β) :
functor.map h ∘ multiset.to_finset = multiset.to_finset ∘ functor.map h :=
funext $ λ s, image_to_finset
lemma map_traverse (g : α → G β) (h : β → γ) (s : finset α) :
functor.map h <$> traverse g s = traverse (functor.map h ∘ g) s :=
begin
unfold traverse,
simp only [map_comp_coe] with functor_norm,
rw [is_lawful_functor.comp_map, multiset.map_traverse],
end
end traversable
end finset