Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2015 Microsoft Corporation. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Leonardo de Moura, Jeremy Avigad, Minchao Wu, Mario Carneiro | |
-/ | |
import data.int.basic | |
import data.multiset.finset_ops | |
import tactic.apply | |
import tactic.monotonicity | |
import tactic.nth_rewrite | |
/-! | |
# Finite sets | |
Terms of type `finset α` are one way of talking about finite subsets of `α` in mathlib. | |
Below, `finset α` is defined as a structure with 2 fields: | |
1. `val` is a `multiset α` of elements; | |
2. `nodup` is a proof that `val` has no duplicates. | |
Finsets in Lean are constructive in that they have an underlying `list` that enumerates their | |
elements. In particular, any function that uses the data of the underlying list cannot depend on its | |
ordering. This is handled on the `multiset` level by multiset API, so in most cases one needn't | |
worry about it explicitly. | |
Finsets give a basic foundation for defining finite sums and products over types: | |
1. `∑ i in (s : finset α), f i`; | |
2. `∏ i in (s : finset α), f i`. | |
Lean refers to these operations as `big_operator`s. | |
More information can be found in `algebra.big_operators.basic`. | |
Finsets are directly used to define fintypes in Lean. | |
A `fintype α` instance for a type `α` consists of | |
a universal `finset α` containing every term of `α`, called `univ`. See `data.fintype.basic`. | |
There is also `univ'`, the noncomputable partner to `univ`, | |
which is defined to be `α` as a finset if `α` is finite, | |
and the empty finset otherwise. See `data.fintype.basic`. | |
`finset.card`, the size of a finset is defined in `data.finset.card`. This is then used to define | |
`fintype.card`, the size of a type. | |
## Main declarations | |
### Main definitions | |
* `finset`: Defines a type for the finite subsets of `α`. | |
Constructing a `finset` requires two pieces of data: `val`, a `multiset α` of elements, | |
and `nodup`, a proof that `val` has no duplicates. | |
* `finset.has_mem`: Defines membership `a ∈ (s : finset α)`. | |
* `finset.has_coe`: Provides a coercion `s : finset α` to `s : set α`. | |
* `finset.has_coe_to_sort`: Coerce `s : finset α` to the type of all `x ∈ s`. | |
* `finset.induction_on`: Induction on finsets. To prove a proposition about an arbitrary `finset α`, | |
it suffices to prove it for the empty finset, and to show that if it holds for some `finset α`, | |
then it holds for the finset obtained by inserting a new element. | |
* `finset.choose`: Given a proof `h` of existence and uniqueness of a certain element | |
satisfying a predicate, `choose s h` returns the element of `s` satisfying that predicate. | |
### Finset constructions | |
* `singleton`: Denoted by `{a}`; the finset consisting of one element. | |
* `finset.empty`: Denoted by `∅`. The finset associated to any type consisting of no elements. | |
* `finset.range`: For any `n : ℕ`, `range n` is equal to `{0, 1, ... , n - 1} ⊆ ℕ`. | |
This convention is consistent with other languages and normalizes `card (range n) = n`. | |
Beware, `n` is not in `range n`. | |
* `finset.attach`: Given `s : finset α`, `attach s` forms a finset of elements of the subtype | |
`{a // a ∈ s}`; in other words, it attaches elements to a proof of membership in the set. | |
### Finsets from functions | |
* `finset.image`: Given a function `f : α → β`, `s.image f` is the image finset in `β`. | |
* `finset.map`: Given an embedding `f : α ↪ β`, `s.map f` is the image finset in `β`. | |
* `finset.filter`: Given a predicate `p : α → Prop`, `s.filter p` is | |
the finset consisting of those elements in `s` satisfying the predicate `p`. | |
### The lattice structure on subsets of finsets | |
There is a natural lattice structure on the subsets of a set. | |
In Lean, we use lattice notation to talk about things involving unions and intersections. See | |
`order.lattice`. For the lattice structure on finsets, `⊥` is called `bot` with `⊥ = ∅` and `⊤` is | |
called `top` with `⊤ = univ`. | |
* `finset.has_subset`: Lots of API about lattices, otherwise behaves exactly as one would expect. | |
* `finset.has_union`: Defines `s ∪ t` (or `s ⊔ t`) as the union of `s` and `t`. | |
See `finset.sup`/`finset.bUnion` for finite unions. | |
* `finset.has_inter`: Defines `s ∩ t` (or `s ⊓ t`) as the intersection of `s` and `t`. | |
See `finset.inf` for finite intersections. | |
* `finset.disj_union`: Given a hypothesis `h` which states that finsets `s` and `t` are disjoint, | |
`s.disj_union t h` is the set such that `a ∈ disj_union s t h` iff `a ∈ s` or `a ∈ t`; this does | |
not require decidable equality on the type `α`. | |
### Operations on two or more finsets | |
* `insert` and `finset.cons`: For any `a : α`, `insert s a` returns `s ∪ {a}`. `cons s a h` | |
returns the same except that it requires a hypothesis stating that `a` is not already in `s`. | |
This does not require decidable equality on the type `α`. | |
* `finset.has_union`: see "The lattice structure on subsets of finsets" | |
* `finset.has_inter`: see "The lattice structure on subsets of finsets" | |
* `finset.erase`: For any `a : α`, `erase s a` returns `s` with the element `a` removed. | |
* `finset.has_sdiff`: Defines the set difference `s \ t` for finsets `s` and `t`. | |
* `finset.product`: Given finsets of `α` and `β`, defines finsets of `α × β`. | |
For arbitrary dependent products, see `data.finset.pi`. | |
* `finset.bUnion`: Finite unions of finsets; given an indexing function `f : α → finset β` and a | |
`s : finset α`, `s.bUnion f` is the union of all finsets of the form `f a` for `a ∈ s`. | |
* `finset.bInter`: TODO: Implemement finite intersections. | |
### Maps constructed using finsets | |
* `finset.piecewise`: Given two functions `f`, `g`, `s.piecewise f g` is a function which is equal | |
to `f` on `s` and `g` on the complement. | |
### Predicates on finsets | |
* `disjoint`: defined via the lattice structure on finsets; two sets are disjoint if their | |
intersection is empty. | |
* `finset.nonempty`: A finset is nonempty if it has elements. | |
This is equivalent to saying `s ≠ ∅`. TODO: Decide on the simp normal form. | |
### Equivalences between finsets | |
* The `data.equiv` files describe a general type of equivalence, so look in there for any lemmas. | |
There is some API for rewriting sums and products from `s` to `t` given that `s ≃ t`. | |
TODO: examples | |
## Tags | |
finite sets, finset | |
-/ | |
open multiset subtype nat function | |
universes u | |
variables {α : Type*} {β : Type*} {γ : Type*} | |
/-- `finset α` is the type of finite sets of elements of `α`. It is implemented | |
as a multiset (a list up to permutation) which has no duplicate elements. -/ | |
structure finset (α : Type*) := | |
(val : multiset α) | |
(nodup : nodup val) | |
namespace finset | |
theorem eq_of_veq : ∀ {s t : finset α}, s.1 = t.1 → s = t | |
| ⟨s, _⟩ ⟨t, _⟩ rfl := rfl | |
theorem val_injective : injective (val : finset α → multiset α) := λ _ _, eq_of_veq | |
@[simp] theorem val_inj {s t : finset α} : s.1 = t.1 ↔ s = t := val_injective.eq_iff | |
@[simp] theorem dedup_eq_self [decidable_eq α] (s : finset α) : dedup s.1 = s.1 := | |
s.2.dedup | |
instance has_decidable_eq [decidable_eq α] : decidable_eq (finset α) | |
| s₁ s₂ := decidable_of_iff _ val_inj | |
/-! ### membership -/ | |
instance : has_mem α (finset α) := ⟨λ a s, a ∈ s.1⟩ | |
theorem mem_def {a : α} {s : finset α} : a ∈ s ↔ a ∈ s.1 := iff.rfl | |
@[simp] theorem mem_mk {a : α} {s nd} : a ∈ @finset.mk α s nd ↔ a ∈ s := iff.rfl | |
instance decidable_mem [h : decidable_eq α] (a : α) (s : finset α) : decidable (a ∈ s) := | |
multiset.decidable_mem _ _ | |
/-! ### set coercion -/ | |
/-- Convert a finset to a set in the natural way. -/ | |
instance : has_coe_t (finset α) (set α) := ⟨λ s, {x | x ∈ s}⟩ | |
@[simp, norm_cast] lemma mem_coe {a : α} {s : finset α} : a ∈ (s : set α) ↔ a ∈ s := iff.rfl | |
@[simp] lemma set_of_mem {α} {s : finset α} : {a | a ∈ s} = s := rfl | |
@[simp] lemma coe_mem {s : finset α} (x : (s : set α)) : ↑x ∈ s := x.2 | |
@[simp] lemma mk_coe {s : finset α} (x : (s : set α)) {h} : | |
(⟨x, h⟩ : (s : set α)) = x := | |
subtype.coe_eta _ _ | |
instance decidable_mem' [decidable_eq α] (a : α) (s : finset α) : | |
decidable (a ∈ (s : set α)) := s.decidable_mem _ | |
/-! ### extensionality -/ | |
theorem ext_iff {s₁ s₂ : finset α} : s₁ = s₂ ↔ ∀ a, a ∈ s₁ ↔ a ∈ s₂ := | |
val_inj.symm.trans $ s₁.nodup.ext s₂.nodup | |
@[ext] | |
theorem ext {s₁ s₂ : finset α} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := | |
ext_iff.2 | |
@[simp, norm_cast] theorem coe_inj {s₁ s₂ : finset α} : (s₁ : set α) = s₂ ↔ s₁ = s₂ := | |
set.ext_iff.trans ext_iff.symm | |
lemma coe_injective {α} : injective (coe : finset α → set α) := | |
λ s t, coe_inj.1 | |
/-! ### type coercion -/ | |
/-- Coercion from a finset to the corresponding subtype. -/ | |
instance {α : Type u} : has_coe_to_sort (finset α) (Type u) := ⟨λ s, {x // x ∈ s}⟩ | |
@[simp] protected lemma forall_coe {α : Type*} (s : finset α) (p : s → Prop) : | |
(∀ (x : s), p x) ↔ ∀ (x : α) (h : x ∈ s), p ⟨x, h⟩ := subtype.forall | |
@[simp] protected lemma exists_coe {α : Type*} (s : finset α) (p : s → Prop) : | |
(∃ (x : s), p x) ↔ ∃ (x : α) (h : x ∈ s), p ⟨x, h⟩ := subtype.exists | |
instance pi_finset_coe.can_lift (ι : Type*) (α : Π i : ι, Type*) [ne : Π i, nonempty (α i)] | |
(s : finset ι) : | |
can_lift (Π i : s, α i) (Π i, α i) := | |
{ coe := λ f i, f i, | |
.. pi_subtype.can_lift ι α (∈ s) } | |
instance pi_finset_coe.can_lift' (ι α : Type*) [ne : nonempty α] (s : finset ι) : | |
can_lift (s → α) (ι → α) := | |
pi_finset_coe.can_lift ι (λ _, α) s | |
instance finset_coe.can_lift (s : finset α) : can_lift α s := | |
{ coe := coe, | |
cond := λ a, a ∈ s, | |
prf := λ a ha, ⟨⟨a, ha⟩, rfl⟩ } | |
@[simp, norm_cast] lemma coe_sort_coe (s : finset α) : | |
((s : set α) : Sort*) = s := rfl | |
/-! ### Subset and strict subset relations -/ | |
section subset | |
variables {s t : finset α} | |
instance : has_subset (finset α) := ⟨λ s t, ∀ ⦃a⦄, a ∈ s → a ∈ t⟩ | |
instance : has_ssubset (finset α) := ⟨λ s t, s ⊆ t ∧ ¬ t ⊆ s⟩ | |
instance : partial_order (finset α) := | |
{ le := (⊆), | |
lt := (⊂), | |
le_refl := λ s a, id, | |
le_trans := λ s t u hst htu a ha, htu $ hst ha, | |
le_antisymm := λ s t hst hts, ext $ λ a, ⟨@hst _, @hts _⟩ } | |
instance : is_refl (finset α) (⊆) := has_le.le.is_refl | |
instance : is_trans (finset α) (⊆) := has_le.le.is_trans | |
instance : is_antisymm (finset α) (⊆) := has_le.le.is_antisymm | |
instance : is_irrefl (finset α) (⊂) := has_lt.lt.is_irrefl | |
instance : is_trans (finset α) (⊂) := has_lt.lt.is_trans | |
instance : is_asymm (finset α) (⊂) := has_lt.lt.is_asymm | |
instance : is_nonstrict_strict_order (finset α) (⊆) (⊂) := ⟨λ _ _, iff.rfl⟩ | |
lemma subset_def : s ⊆ t ↔ s.1 ⊆ t.1 := iff.rfl | |
lemma ssubset_def : s ⊂ t ↔ s ⊆ t ∧ ¬ t ⊆ s := iff.rfl | |
@[simp] theorem subset.refl (s : finset α) : s ⊆ s := subset.refl _ | |
protected lemma subset.rfl {s :finset α} : s ⊆ s := subset.refl _ | |
protected theorem subset_of_eq {s t : finset α} (h : s = t) : s ⊆ t := h ▸ subset.refl _ | |
theorem subset.trans {s₁ s₂ s₃ : finset α} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := subset.trans | |
theorem superset.trans {s₁ s₂ s₃ : finset α} : s₁ ⊇ s₂ → s₂ ⊇ s₃ → s₁ ⊇ s₃ := | |
λ h' h, subset.trans h h' | |
theorem mem_of_subset {s₁ s₂ : finset α} {a : α} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := mem_of_subset | |
lemma not_mem_mono {s t : finset α} (h : s ⊆ t) {a : α} : a ∉ t → a ∉ s := mt $ @h _ | |
theorem subset.antisymm {s₁ s₂ : finset α} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ := | |
ext $ λ a, ⟨@H₁ a, @H₂ a⟩ | |
theorem subset_iff {s₁ s₂ : finset α} : s₁ ⊆ s₂ ↔ ∀ ⦃x⦄, x ∈ s₁ → x ∈ s₂ := iff.rfl | |
@[simp, norm_cast] theorem coe_subset {s₁ s₂ : finset α} : | |
(s₁ : set α) ⊆ s₂ ↔ s₁ ⊆ s₂ := iff.rfl | |
@[simp] theorem val_le_iff {s₁ s₂ : finset α} : s₁.1 ≤ s₂.1 ↔ s₁ ⊆ s₂ := le_iff_subset s₁.2 | |
theorem subset.antisymm_iff {s₁ s₂ : finset α} : s₁ = s₂ ↔ s₁ ⊆ s₂ ∧ s₂ ⊆ s₁ := | |
le_antisymm_iff | |
theorem not_subset (s t : finset α) : ¬(s ⊆ t) ↔ ∃ x ∈ s, ¬(x ∈ t) := | |
by simp only [←finset.coe_subset, set.not_subset, exists_prop, finset.mem_coe] | |
@[simp] theorem le_eq_subset : ((≤) : finset α → finset α → Prop) = (⊆) := rfl | |
@[simp] theorem lt_eq_subset : ((<) : finset α → finset α → Prop) = (⊂) := rfl | |
theorem le_iff_subset {s₁ s₂ : finset α} : s₁ ≤ s₂ ↔ s₁ ⊆ s₂ := iff.rfl | |
theorem lt_iff_ssubset {s₁ s₂ : finset α} : s₁ < s₂ ↔ s₁ ⊂ s₂ := iff.rfl | |
@[simp, norm_cast] lemma coe_ssubset {s₁ s₂ : finset α} : (s₁ : set α) ⊂ s₂ ↔ s₁ ⊂ s₂ := | |
show (s₁ : set α) ⊂ s₂ ↔ s₁ ⊆ s₂ ∧ ¬s₂ ⊆ s₁, | |
by simp only [set.ssubset_def, finset.coe_subset] | |
@[simp] theorem val_lt_iff {s₁ s₂ : finset α} : s₁.1 < s₂.1 ↔ s₁ ⊂ s₂ := | |
and_congr val_le_iff $ not_congr val_le_iff | |
lemma ssubset_iff_subset_ne {s t : finset α} : s ⊂ t ↔ s ⊆ t ∧ s ≠ t := | |
@lt_iff_le_and_ne _ _ s t | |
theorem ssubset_iff_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁ ⊂ s₂ ↔ ∃ x ∈ s₂, x ∉ s₁ := | |
set.ssubset_iff_of_subset h | |
lemma ssubset_of_ssubset_of_subset {s₁ s₂ s₃ : finset α} (hs₁s₂ : s₁ ⊂ s₂) (hs₂s₃ : s₂ ⊆ s₃) : | |
s₁ ⊂ s₃ := | |
set.ssubset_of_ssubset_of_subset hs₁s₂ hs₂s₃ | |
lemma ssubset_of_subset_of_ssubset {s₁ s₂ s₃ : finset α} (hs₁s₂ : s₁ ⊆ s₂) (hs₂s₃ : s₂ ⊂ s₃) : | |
s₁ ⊂ s₃ := | |
set.ssubset_of_subset_of_ssubset hs₁s₂ hs₂s₃ | |
lemma exists_of_ssubset {s₁ s₂ : finset α} (h : s₁ ⊂ s₂) : | |
∃ x ∈ s₂, x ∉ s₁ := | |
set.exists_of_ssubset h | |
end subset | |
-- TODO: these should be global attributes, but this will require fixing other files | |
local attribute [trans] subset.trans superset.trans | |
/-! ### Order embedding from `finset α` to `set α` -/ | |
/-- Coercion to `set α` as an `order_embedding`. -/ | |
def coe_emb : finset α ↪o set α := ⟨⟨coe, coe_injective⟩, λ s t, coe_subset⟩ | |
@[simp] lemma coe_coe_emb : ⇑(coe_emb : finset α ↪o set α) = coe := rfl | |
/-! ### Nonempty -/ | |
/-- The property `s.nonempty` expresses the fact that the finset `s` is not empty. It should be used | |
in theorem assumptions instead of `∃ x, x ∈ s` or `s ≠ ∅` as it gives access to a nice API thanks | |
to the dot notation. -/ | |
protected def nonempty (s : finset α) : Prop := ∃ x : α, x ∈ s | |
instance decidable_nonempty {s : finset α} : decidable s.nonempty := | |
decidable_of_iff (∃ a ∈ s, true) $ by simp_rw [exists_prop, and_true, finset.nonempty] | |
@[simp, norm_cast] lemma coe_nonempty {s : finset α} : (s : set α).nonempty ↔ s.nonempty := iff.rfl | |
@[simp] lemma nonempty_coe_sort {s : finset α} : nonempty ↥s ↔ s.nonempty := nonempty_subtype | |
alias coe_nonempty ↔ _ nonempty.to_set | |
lemma nonempty.bex {s : finset α} (h : s.nonempty) : ∃ x : α, x ∈ s := h | |
lemma nonempty.mono {s t : finset α} (hst : s ⊆ t) (hs : s.nonempty) : t.nonempty := | |
set.nonempty.mono hst hs | |
lemma nonempty.forall_const {s : finset α} (h : s.nonempty) {p : Prop} : (∀ x ∈ s, p) ↔ p := | |
let ⟨x, hx⟩ := h in ⟨λ h, h x hx, λ h x hx, h⟩ | |
/-! ### empty -/ | |
/-- The empty finset -/ | |
protected def empty : finset α := ⟨0, nodup_zero⟩ | |
instance : has_emptyc (finset α) := ⟨finset.empty⟩ | |
instance inhabited_finset : inhabited (finset α) := ⟨∅⟩ | |
@[simp] theorem empty_val : (∅ : finset α).1 = 0 := rfl | |
@[simp] theorem not_mem_empty (a : α) : a ∉ (∅ : finset α) := id | |
@[simp] theorem not_nonempty_empty : ¬(∅ : finset α).nonempty := | |
λ ⟨x, hx⟩, not_mem_empty x hx | |
@[simp] theorem mk_zero : (⟨0, nodup_zero⟩ : finset α) = ∅ := rfl | |
theorem ne_empty_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ≠ ∅ := | |
λ e, not_mem_empty a $ e ▸ h | |
theorem nonempty.ne_empty {s : finset α} (h : s.nonempty) : s ≠ ∅ := | |
exists.elim h $ λ a, ne_empty_of_mem | |
@[simp] theorem empty_subset (s : finset α) : ∅ ⊆ s := zero_subset _ | |
lemma eq_empty_of_forall_not_mem {s : finset α} (H : ∀ x, x ∉ s) : s = ∅ := | |
eq_of_veq (eq_zero_of_forall_not_mem H) | |
lemma eq_empty_iff_forall_not_mem {s : finset α} : s = ∅ ↔ ∀ x, x ∉ s := | |
⟨by rintro rfl x; exact id, λ h, eq_empty_of_forall_not_mem h⟩ | |
@[simp] theorem val_eq_zero {s : finset α} : s.1 = 0 ↔ s = ∅ := @val_inj _ s ∅ | |
theorem subset_empty {s : finset α} : s ⊆ ∅ ↔ s = ∅ := subset_zero.trans val_eq_zero | |
@[simp] lemma not_ssubset_empty (s : finset α) : ¬s ⊂ ∅ := | |
λ h, let ⟨x, he, hs⟩ := exists_of_ssubset h in he | |
theorem nonempty_of_ne_empty {s : finset α} (h : s ≠ ∅) : s.nonempty := | |
exists_mem_of_ne_zero (mt val_eq_zero.1 h) | |
theorem nonempty_iff_ne_empty {s : finset α} : s.nonempty ↔ s ≠ ∅ := | |
⟨nonempty.ne_empty, nonempty_of_ne_empty⟩ | |
@[simp] theorem not_nonempty_iff_eq_empty {s : finset α} : ¬s.nonempty ↔ s = ∅ := | |
nonempty_iff_ne_empty.not.trans not_not | |
theorem eq_empty_or_nonempty (s : finset α) : s = ∅ ∨ s.nonempty := | |
classical.by_cases or.inl (λ h, or.inr (nonempty_of_ne_empty h)) | |
@[simp, norm_cast] lemma coe_empty : ((∅ : finset α) : set α) = ∅ := rfl | |
@[simp, norm_cast] lemma coe_eq_empty {s : finset α} : (s : set α) = ∅ ↔ s = ∅ := | |
by rw [← coe_empty, coe_inj] | |
@[simp] lemma is_empty_coe_sort {s : finset α} : is_empty ↥s ↔ s = ∅ := | |
by simpa using @set.is_empty_coe_sort α s | |
/-- A `finset` for an empty type is empty. -/ | |
lemma eq_empty_of_is_empty [is_empty α] (s : finset α) : s = ∅ := | |
finset.eq_empty_of_forall_not_mem is_empty_elim | |
/-! ### singleton -/ | |
/-- | |
`{a} : finset a` is the set `{a}` containing `a` and nothing else. | |
This differs from `insert a ∅` in that it does not require a `decidable_eq` instance for `α`. | |
-/ | |
instance : has_singleton α (finset α) := ⟨λ a, ⟨{a}, nodup_singleton a⟩⟩ | |
@[simp] theorem singleton_val (a : α) : ({a} : finset α).1 = {a} := rfl | |
@[simp] theorem mem_singleton {a b : α} : b ∈ ({a} : finset α) ↔ b = a := mem_singleton | |
lemma eq_of_mem_singleton {x y : α} (h : x ∈ ({y} : finset α)) : x = y := mem_singleton.1 h | |
theorem not_mem_singleton {a b : α} : a ∉ ({b} : finset α) ↔ a ≠ b := not_congr mem_singleton | |
theorem mem_singleton_self (a : α) : a ∈ ({a} : finset α) := or.inl rfl | |
lemma singleton_injective : injective (singleton : α → finset α) := | |
λ a b h, mem_singleton.1 (h ▸ mem_singleton_self _) | |
theorem singleton_inj {a b : α} : ({a} : finset α) = {b} ↔ a = b := | |
singleton_injective.eq_iff | |
@[simp] theorem singleton_nonempty (a : α) : ({a} : finset α).nonempty := ⟨a, mem_singleton_self a⟩ | |
@[simp] theorem singleton_ne_empty (a : α) : ({a} : finset α) ≠ ∅ := (singleton_nonempty a).ne_empty | |
@[simp, norm_cast] lemma coe_singleton (a : α) : (({a} : finset α) : set α) = {a} := | |
by { ext, simp } | |
@[simp, norm_cast] lemma coe_eq_singleton {α : Type*} {s : finset α} {a : α} : | |
(s : set α) = {a} ↔ s = {a} := | |
by rw [←finset.coe_singleton, finset.coe_inj] | |
lemma eq_singleton_iff_unique_mem {s : finset α} {a : α} : | |
s = {a} ↔ a ∈ s ∧ ∀ x ∈ s, x = a := | |
begin | |
split; intro t, | |
rw t, | |
refine ⟨finset.mem_singleton_self _, λ _, finset.mem_singleton.1⟩, | |
ext, rw finset.mem_singleton, | |
refine ⟨t.right _, λ r, r.symm ▸ t.left⟩ | |
end | |
lemma eq_singleton_iff_nonempty_unique_mem {s : finset α} {a : α} : | |
s = {a} ↔ s.nonempty ∧ ∀ x ∈ s, x = a := | |
begin | |
split, | |
{ rintro rfl, simp }, | |
{ rintros ⟨hne, h_uniq⟩, rw eq_singleton_iff_unique_mem, refine ⟨_, h_uniq⟩, | |
rw ← h_uniq hne.some hne.some_spec, exact hne.some_spec } | |
end | |
lemma nonempty_iff_eq_singleton_default [unique α] {s : finset α} : | |
s.nonempty ↔ s = {default} := | |
by simp [eq_singleton_iff_nonempty_unique_mem] | |
alias nonempty_iff_eq_singleton_default ↔ nonempty.eq_singleton_default _ | |
lemma singleton_iff_unique_mem (s : finset α) : (∃ a, s = {a}) ↔ ∃! a, a ∈ s := | |
by simp only [eq_singleton_iff_unique_mem, exists_unique] | |
lemma singleton_subset_set_iff {s : set α} {a : α} : ↑({a} : finset α) ⊆ s ↔ a ∈ s := | |
by rw [coe_singleton, set.singleton_subset_iff] | |
@[simp] lemma singleton_subset_iff {s : finset α} {a : α} : {a} ⊆ s ↔ a ∈ s := | |
singleton_subset_set_iff | |
@[simp] lemma subset_singleton_iff {s : finset α} {a : α} : s ⊆ {a} ↔ s = ∅ ∨ s = {a} := | |
by rw [←coe_subset, coe_singleton, set.subset_singleton_iff_eq, coe_eq_empty, coe_eq_singleton] | |
protected lemma nonempty.subset_singleton_iff {s : finset α} {a : α} (h : s.nonempty) : | |
s ⊆ {a} ↔ s = {a} := | |
subset_singleton_iff.trans $ or_iff_right h.ne_empty | |
lemma subset_singleton_iff' {s : finset α} {a : α} : s ⊆ {a} ↔ ∀ b ∈ s, b = a := | |
forall₂_congr $ λ _ _, mem_singleton | |
@[simp] lemma ssubset_singleton_iff {s : finset α} {a : α} : | |
s ⊂ {a} ↔ s = ∅ := | |
by rw [←coe_ssubset, coe_singleton, set.ssubset_singleton_iff, coe_eq_empty] | |
lemma eq_empty_of_ssubset_singleton {s : finset α} {x : α} (hs : s ⊂ {x}) : s = ∅ := | |
ssubset_singleton_iff.1 hs | |
instance [nonempty α] : nontrivial (finset α) := | |
‹nonempty α›.elim $ λ a, ⟨⟨{a}, ∅, singleton_ne_empty _⟩⟩ | |
instance [is_empty α] : unique (finset α) := | |
{ default := ∅, | |
uniq := λ s, eq_empty_of_forall_not_mem is_empty_elim } | |
/-! ### cons -/ | |
section cons | |
variables {s t : finset α} {a b : α} | |
/-- `cons a s h` is the set `{a} ∪ s` containing `a` and the elements of `s`. It is the same as | |
`insert a s` when it is defined, but unlike `insert a s` it does not require `decidable_eq α`, | |
and the union is guaranteed to be disjoint. -/ | |
def cons (a : α) (s : finset α) (h : a ∉ s) : finset α := ⟨a ::ₘ s.1, nodup_cons.2 ⟨h, s.2⟩⟩ | |
@[simp] lemma mem_cons {h} : b ∈ s.cons a h ↔ b = a ∨ b ∈ s := mem_cons | |
@[simp] lemma mem_cons_self (a : α) (s : finset α) {h} : a ∈ cons a s h := mem_cons_self _ _ | |
@[simp] lemma cons_val (h : a ∉ s) : (cons a s h).1 = a ::ₘ s.1 := rfl | |
lemma forall_mem_cons (h : a ∉ s) (p : α → Prop) : | |
(∀ x, x ∈ cons a s h → p x) ↔ p a ∧ ∀ x, x ∈ s → p x := | |
by simp only [mem_cons, or_imp_distrib, forall_and_distrib, forall_eq] | |
@[simp] lemma mk_cons {s : multiset α} (h : (a ::ₘ s).nodup) : | |
(⟨a ::ₘ s, h⟩ : finset α) = cons a ⟨s, (nodup_cons.1 h).2⟩ (nodup_cons.1 h).1 := rfl | |
@[simp] lemma nonempty_cons (h : a ∉ s) : (cons a s h).nonempty := ⟨a, mem_cons.2 $ or.inl rfl⟩ | |
@[simp] lemma nonempty_mk_coe : ∀ {l : list α} {hl}, (⟨↑l, hl⟩ : finset α).nonempty ↔ l ≠ [] | |
| [] hl := by simp | |
| (a :: l) hl := by simp [← multiset.cons_coe] | |
@[simp] lemma coe_cons {a s h} : (@cons α a s h : set α) = insert a s := by { ext, simp } | |
lemma subset_cons (h : a ∉ s) : s ⊆ s.cons a h := subset_cons _ _ | |
lemma ssubset_cons (h : a ∉ s) : s ⊂ s.cons a h := ssubset_cons h | |
lemma cons_subset {h : a ∉ s} : s.cons a h ⊆ t ↔ a ∈ t ∧ s ⊆ t := cons_subset | |
@[simp] lemma cons_subset_cons {hs ht} : s.cons a hs ⊆ t.cons a ht ↔ s ⊆ t := | |
by rwa [← coe_subset, coe_cons, coe_cons, set.insert_subset_insert_iff, coe_subset] | |
lemma ssubset_iff_exists_cons_subset : s ⊂ t ↔ ∃ a (h : a ∉ s), s.cons a h ⊆ t := | |
begin | |
refine ⟨λ h, _, λ ⟨a, ha, h⟩, ssubset_of_ssubset_of_subset (ssubset_cons _) h⟩, | |
obtain ⟨a, hs, ht⟩ := (not_subset _ _).1 h.2, | |
exact ⟨a, ht, cons_subset.2 ⟨hs, h.subset⟩⟩, | |
end | |
end cons | |
/-! ### disjoint union -/ | |
/-- `disj_union s t h` is the set such that `a ∈ disj_union s t h` iff `a ∈ s` or `a ∈ t`. | |
It is the same as `s ∪ t`, but it does not require decidable equality on the type. The hypothesis | |
ensures that the sets are disjoint. -/ | |
def disj_union (s t : finset α) (h : ∀ a ∈ s, a ∉ t) : finset α := | |
⟨s.1 + t.1, multiset.nodup_add.2 ⟨s.2, t.2, h⟩⟩ | |
@[simp] theorem mem_disj_union {α s t h a} : | |
a ∈ @disj_union α s t h ↔ a ∈ s ∨ a ∈ t := | |
by rcases s with ⟨⟨s⟩⟩; rcases t with ⟨⟨t⟩⟩; apply list.mem_append | |
lemma disj_union_comm (s t : finset α) (h : ∀ a ∈ s, a ∉ t) : | |
disj_union s t h = disj_union t s (λ a ht hs, h _ hs ht) := | |
eq_of_veq $ add_comm _ _ | |
@[simp] lemma empty_disj_union (t : finset α) (h : ∀ a' ∈ ∅, a' ∉ t := λ a h _, not_mem_empty _ h) : | |
disj_union ∅ t h = t := | |
eq_of_veq $ zero_add _ | |
@[simp] lemma disj_union_empty (s : finset α) (h : ∀ a' ∈ s, a' ∉ ∅ := λ a h, not_mem_empty _) : | |
disj_union s ∅ h = s := | |
eq_of_veq $ add_zero _ | |
lemma singleton_disj_union (a : α) (t : finset α) (h : ∀ a' ∈ {a}, a' ∉ t) : | |
disj_union {a} t h = cons a t (h _ $ mem_singleton_self _) := | |
eq_of_veq $ multiset.singleton_add _ _ | |
lemma disj_union_singleton (s : finset α) (a : α) (h : ∀ a' ∈ s, a' ∉ {a}) : | |
disj_union s {a} h = cons a s (λ ha, h _ ha $ mem_singleton_self _) := | |
by rw [disj_union_comm, singleton_disj_union] | |
/-! ### insert -/ | |
section decidable_eq | |
variables [decidable_eq α] {s t u v : finset α} {a b : α} | |
/-- `insert a s` is the set `{a} ∪ s` containing `a` and the elements of `s`. -/ | |
instance : has_insert α (finset α) := ⟨λ a s, ⟨_, s.2.ndinsert a⟩⟩ | |
lemma insert_def (a : α) (s : finset α) : insert a s = ⟨_, s.2.ndinsert a⟩ := rfl | |
@[simp] theorem insert_val (a : α) (s : finset α) : (insert a s).1 = ndinsert a s.1 := rfl | |
theorem insert_val' (a : α) (s : finset α) : (insert a s).1 = dedup (a ::ₘ s.1) := | |
by rw [dedup_cons, dedup_eq_self]; refl | |
theorem insert_val_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : (insert a s).1 = a ::ₘ s.1 := | |
by rw [insert_val, ndinsert_of_not_mem h] | |
@[simp] lemma mem_insert : a ∈ insert b s ↔ a = b ∨ a ∈ s := mem_ndinsert | |
theorem mem_insert_self (a : α) (s : finset α) : a ∈ insert a s := mem_ndinsert_self a s.1 | |
lemma mem_insert_of_mem (h : a ∈ s) : a ∈ insert b s := mem_ndinsert_of_mem h | |
lemma mem_of_mem_insert_of_ne (h : b ∈ insert a s) : b ≠ a → b ∈ s := (mem_insert.1 h).resolve_left | |
lemma eq_of_not_mem_of_mem_insert (ha : b ∈ insert a s) (hb : b ∉ s) : b = a := | |
(mem_insert.1 ha).resolve_right hb | |
@[simp] theorem cons_eq_insert {α} [decidable_eq α] (a s h) : @cons α a s h = insert a s := | |
ext $ λ a, by simp | |
@[simp, norm_cast] lemma coe_insert (a : α) (s : finset α) : | |
↑(insert a s) = (insert a s : set α) := | |
set.ext $ λ x, by simp only [mem_coe, mem_insert, set.mem_insert_iff] | |
lemma mem_insert_coe {s : finset α} {x y : α} : x ∈ insert y s ↔ x ∈ insert y (s : set α) := | |
by simp | |
instance : is_lawful_singleton α (finset α) := ⟨λ a, by { ext, simp }⟩ | |
@[simp] lemma insert_eq_of_mem (h : a ∈ s) : insert a s = s := eq_of_veq $ ndinsert_of_mem h | |
@[simp] lemma insert_eq_self : insert a s = s ↔ a ∈ s := | |
⟨λ h, h ▸ mem_insert_self _ _, insert_eq_of_mem⟩ | |
lemma insert_ne_self : insert a s ≠ s ↔ a ∉ s := insert_eq_self.not | |
@[simp] theorem pair_eq_singleton (a : α) : ({a, a} : finset α) = {a} := | |
insert_eq_of_mem $ mem_singleton_self _ | |
theorem insert.comm (a b : α) (s : finset α) : insert a (insert b s) = insert b (insert a s) := | |
ext $ λ x, by simp only [mem_insert, or.left_comm] | |
theorem pair_comm (a b : α) : ({a, b} : finset α) = {b, a} := | |
insert.comm a b ∅ | |
@[simp] theorem insert_idem (a : α) (s : finset α) : insert a (insert a s) = insert a s := | |
ext $ λ x, by simp only [mem_insert, or.assoc.symm, or_self] | |
@[simp] theorem insert_nonempty (a : α) (s : finset α) : (insert a s).nonempty := | |
⟨a, mem_insert_self a s⟩ | |
@[simp] theorem insert_ne_empty (a : α) (s : finset α) : insert a s ≠ ∅ := | |
(insert_nonempty a s).ne_empty | |
/-! | |
The universe annotation is required for the following instance, possibly this is a bug in Lean. See | |
leanprover.zulipchat.com/#narrow/stream/113488-general/topic/strange.20error.20(universe.20issue.3F) | |
-/ | |
instance {α : Type u} [decidable_eq α] (i : α) (s : finset α) : | |
nonempty.{u + 1} ((insert i s : finset α) : set α) := | |
(finset.coe_nonempty.mpr (s.insert_nonempty i)).to_subtype | |
lemma ne_insert_of_not_mem (s t : finset α) {a : α} (h : a ∉ s) : s ≠ insert a t := | |
by { contrapose! h, simp [h] } | |
lemma insert_subset : insert a s ⊆ t ↔ a ∈ t ∧ s ⊆ t := | |
by simp only [subset_iff, mem_insert, forall_eq, or_imp_distrib, forall_and_distrib] | |
lemma subset_insert (a : α) (s : finset α) : s ⊆ insert a s := λ b, mem_insert_of_mem | |
theorem insert_subset_insert (a : α) {s t : finset α} (h : s ⊆ t) : insert a s ⊆ insert a t := | |
insert_subset.2 ⟨mem_insert_self _ _, subset.trans h (subset_insert _ _)⟩ | |
lemma insert_inj (ha : a ∉ s) : insert a s = insert b s ↔ a = b := | |
⟨λ h, eq_of_not_mem_of_mem_insert (h.subst $ mem_insert_self _ _) ha, congr_arg _⟩ | |
lemma insert_inj_on (s : finset α) : set.inj_on (λ a, insert a s) sᶜ := λ a h b _, (insert_inj h).1 | |
lemma ssubset_iff : s ⊂ t ↔ ∃ a ∉ s, insert a s ⊆ t := | |
by exact_mod_cast @set.ssubset_iff_insert α s t | |
lemma ssubset_insert (h : a ∉ s) : s ⊂ insert a s := ssubset_iff.mpr ⟨a, h, subset.rfl⟩ | |
@[elab_as_eliminator] | |
lemma cons_induction {α : Type*} {p : finset α → Prop} | |
(h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α} (h : a ∉ s), p s → p (cons a s h)) : ∀ s, p s | |
| ⟨s, nd⟩ := multiset.induction_on s (λ _, h₁) (λ a s IH nd, begin | |
cases nodup_cons.1 nd with m nd', | |
rw [← (eq_of_veq _ : cons a (finset.mk s _) m = ⟨a ::ₘ s, nd⟩)], | |
{ exact h₂ (by exact m) (IH nd') }, | |
{ rw [cons_val] } | |
end) nd | |
@[elab_as_eliminator] | |
lemma cons_induction_on {α : Type*} {p : finset α → Prop} (s : finset α) | |
(h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α} (h : a ∉ s), p s → p (cons a s h)) : p s := | |
cons_induction h₁ h₂ s | |
@[elab_as_eliminator] | |
protected theorem induction {α : Type*} {p : finset α → Prop} [decidable_eq α] | |
(h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : ∀ s, p s := | |
cons_induction h₁ $ λ a s ha, (s.cons_eq_insert a ha).symm ▸ h₂ ha | |
/-- | |
To prove a proposition about an arbitrary `finset α`, | |
it suffices to prove it for the empty `finset`, | |
and to show that if it holds for some `finset α`, | |
then it holds for the `finset` obtained by inserting a new element. | |
-/ | |
@[elab_as_eliminator] | |
protected theorem induction_on {α : Type*} {p : finset α → Prop} [decidable_eq α] | |
(s : finset α) (h₁ : p ∅) (h₂ : ∀ ⦃a : α⦄ {s : finset α}, a ∉ s → p s → p (insert a s)) : p s := | |
finset.induction h₁ h₂ s | |
/-- | |
To prove a proposition about `S : finset α`, | |
it suffices to prove it for the empty `finset`, | |
and to show that if it holds for some `finset α ⊆ S`, | |
then it holds for the `finset` obtained by inserting a new element of `S`. | |
-/ | |
@[elab_as_eliminator] | |
theorem induction_on' {α : Type*} {p : finset α → Prop} [decidable_eq α] | |
(S : finset α) (h₁ : p ∅) (h₂ : ∀ {a s}, a ∈ S → s ⊆ S → a ∉ s → p s → p (insert a s)) : p S := | |
@finset.induction_on α (λ T, T ⊆ S → p T) _ S (λ _, h₁) (λ a s has hqs hs, | |
let ⟨hS, sS⟩ := finset.insert_subset.1 hs in h₂ hS sS has (hqs sS)) (finset.subset.refl S) | |
/-- To prove a proposition about a nonempty `s : finset α`, it suffices to show it holds for all | |
singletons and that if it holds for nonempty `t : finset α`, then it also holds for the `finset` | |
obtained by inserting an element in `t`. -/ | |
@[elab_as_eliminator] | |
lemma nonempty.cons_induction {α : Type*} {p : Π s : finset α, s.nonempty → Prop} | |
(h₀ : ∀ a, p {a} (singleton_nonempty _)) | |
(h₁ : ∀ ⦃a⦄ s (h : a ∉ s) hs, p s hs → p (finset.cons a s h) (nonempty_cons h)) | |
{s : finset α} (hs : s.nonempty) : p s hs := | |
begin | |
induction s using finset.cons_induction with a t ha h, | |
{ exact (not_nonempty_empty hs).elim }, | |
obtain rfl | ht := t.eq_empty_or_nonempty, | |
{ exact h₀ a }, | |
{ exact h₁ t ha ht (h ht) } | |
end | |
/-- Inserting an element to a finite set is equivalent to the option type. -/ | |
def subtype_insert_equiv_option {t : finset α} {x : α} (h : x ∉ t) : | |
{i // i ∈ insert x t} ≃ option {i // i ∈ t} := | |
begin | |
refine | |
{ to_fun := λ y, if h : ↑y = x then none else some ⟨y, (mem_insert.mp y.2).resolve_left h⟩, | |
inv_fun := λ y, y.elim ⟨x, mem_insert_self _ _⟩ $ λ z, ⟨z, mem_insert_of_mem z.2⟩, | |
.. }, | |
{ intro y, by_cases h : ↑y = x, | |
simp only [subtype.ext_iff, h, option.elim, dif_pos, subtype.coe_mk], | |
simp only [h, option.elim, dif_neg, not_false_iff, subtype.coe_eta, subtype.coe_mk] }, | |
{ rintro (_|y), simp only [option.elim, dif_pos, subtype.coe_mk], | |
have : ↑y ≠ x, { rintro ⟨⟩, exact h y.2 }, | |
simp only [this, option.elim, subtype.eta, dif_neg, not_false_iff, subtype.coe_eta, | |
subtype.coe_mk] }, | |
end | |
/-! ### Lattice structure -/ | |
/-- `s ∪ t` is the set such that `a ∈ s ∪ t` iff `a ∈ s` or `a ∈ t`. -/ | |
instance : has_union (finset α) := ⟨λ s t, ⟨_, t.2.ndunion s.1⟩⟩ | |
/-- `s ∩ t` is the set such that `a ∈ s ∩ t` iff `a ∈ s` and `a ∈ t`. -/ | |
instance : has_inter (finset α) := ⟨λ s t, ⟨_, s.2.ndinter t.1⟩⟩ | |
instance : lattice (finset α) := | |
{ sup := (∪), | |
sup_le := λ s t u hs ht a ha, (mem_ndunion.1 ha).elim (λ h, hs h) (λ h, ht h), | |
le_sup_left := λ s t a h, mem_ndunion.2 $ or.inl h, | |
le_sup_right := λ s t a h, mem_ndunion.2 $ or.inr h, | |
inf := (∩), | |
le_inf := λ s t u ht hu a h, mem_ndinter.2 ⟨ht h, hu h⟩, | |
inf_le_left := λ s t a h, (mem_ndinter.1 h).1, | |
inf_le_right := λ s t a h, (mem_ndinter.1 h).2, | |
..finset.partial_order } | |
/-! #### union -/ | |
@[simp] lemma sup_eq_union : ((⊔) : finset α → finset α → finset α) = (∪) := rfl | |
@[simp] lemma inf_eq_inter : ((⊓) : finset α → finset α → finset α) = (∩) := rfl | |
lemma union_val_nd (s t : finset α) : (s ∪ t).1 = ndunion s.1 t.1 := rfl | |
@[simp] lemma union_val (s t : finset α) : (s ∪ t).1 = s.1 ∪ t.1 := ndunion_eq_union s.2 | |
@[simp] lemma mem_union : a ∈ s ∪ t ↔ a ∈ s ∨ a ∈ t := mem_ndunion | |
@[simp] lemma disj_union_eq_union (s t h) : @disj_union α s t h = s ∪ t := ext $ λ a, by simp | |
lemma mem_union_left (t : finset α) (h : a ∈ s) : a ∈ s ∪ t := mem_union.2 $ or.inl h | |
lemma mem_union_right (s : finset α) (h : a ∈ t) : a ∈ s ∪ t := mem_union.2 $ or.inr h | |
lemma forall_mem_union {p : α → Prop} : (∀ a ∈ s ∪ t, p a) ↔ (∀ a ∈ s, p a) ∧ ∀ a ∈ t, p a := | |
⟨λ h, ⟨λ a, h a ∘ mem_union_left _, λ b, h b ∘ mem_union_right _⟩, | |
λ h ab hab, (mem_union.mp hab).elim (h.1 _) (h.2 _)⟩ | |
lemma not_mem_union : a ∉ s ∪ t ↔ a ∉ s ∧ a ∉ t := by rw [mem_union, not_or_distrib] | |
@[simp, norm_cast] | |
lemma coe_union (s₁ s₂ : finset α) : ↑(s₁ ∪ s₂) = (s₁ ∪ s₂ : set α) := set.ext $ λ x, mem_union | |
lemma union_subset (hs : s ⊆ u) : t ⊆ u → s ∪ t ⊆ u := sup_le $ le_iff_subset.2 hs | |
theorem subset_union_left (s₁ s₂ : finset α) : s₁ ⊆ s₁ ∪ s₂ := λ x, mem_union_left _ | |
theorem subset_union_right (s₁ s₂ : finset α) : s₂ ⊆ s₁ ∪ s₂ := λ x, mem_union_right _ | |
lemma union_subset_union (hsu : s ⊆ u) (htv : t ⊆ v) : s ∪ t ⊆ u ∪ v := | |
sup_le_sup (le_iff_subset.2 hsu) htv | |
lemma union_comm (s₁ s₂ : finset α) : s₁ ∪ s₂ = s₂ ∪ s₁ := sup_comm | |
instance : is_commutative (finset α) (∪) := ⟨union_comm⟩ | |
@[simp] lemma union_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := sup_assoc | |
instance : is_associative (finset α) (∪) := ⟨union_assoc⟩ | |
@[simp] lemma union_idempotent (s : finset α) : s ∪ s = s := sup_idem | |
instance : is_idempotent (finset α) (∪) := ⟨union_idempotent⟩ | |
lemma union_subset_left (h : s ∪ t ⊆ u) : s ⊆ u := (subset_union_left _ _).trans h | |
lemma union_subset_right {s t u : finset α} (h : s ∪ t ⊆ u) : t ⊆ u := | |
subset.trans (subset_union_right _ _) h | |
lemma union_left_comm (s t u : finset α) : s ∪ (t ∪ u) = t ∪ (s ∪ u) := | |
ext $ λ _, by simp only [mem_union, or.left_comm] | |
lemma union_right_comm (s t u : finset α) : (s ∪ t) ∪ u = (s ∪ u) ∪ t := | |
ext $ λ x, by simp only [mem_union, or_assoc, or_comm (x ∈ t)] | |
theorem union_self (s : finset α) : s ∪ s = s := union_idempotent s | |
@[simp] theorem union_empty (s : finset α) : s ∪ ∅ = s := | |
ext $ λ x, mem_union.trans $ or_false _ | |
@[simp] theorem empty_union (s : finset α) : ∅ ∪ s = s := | |
ext $ λ x, mem_union.trans $ false_or _ | |
theorem insert_eq (a : α) (s : finset α) : insert a s = {a} ∪ s := rfl | |
@[simp] theorem insert_union (a : α) (s t : finset α) : insert a s ∪ t = insert a (s ∪ t) := | |
by simp only [insert_eq, union_assoc] | |
@[simp] theorem union_insert (a : α) (s t : finset α) : s ∪ insert a t = insert a (s ∪ t) := | |
by simp only [insert_eq, union_left_comm] | |
lemma insert_union_distrib (a : α) (s t : finset α) : insert a (s ∪ t) = insert a s ∪ insert a t := | |
by simp only [insert_union, union_insert, insert_idem] | |
@[simp] lemma union_eq_left_iff_subset {s t : finset α} : s ∪ t = s ↔ t ⊆ s := sup_eq_left | |
@[simp] lemma left_eq_union_iff_subset {s t : finset α} : s = s ∪ t ↔ t ⊆ s := | |
by rw [← union_eq_left_iff_subset, eq_comm] | |
@[simp] lemma union_eq_right_iff_subset {s t : finset α} : s ∪ t = t ↔ s ⊆ t := sup_eq_right | |
@[simp] lemma right_eq_union_iff_subset {s t : finset α} : s = t ∪ s ↔ t ⊆ s := | |
by rw [← union_eq_right_iff_subset, eq_comm] | |
lemma union_congr_left (ht : t ⊆ s ∪ u) (hu : u ⊆ s ∪ t) : s ∪ t = s ⊔ u := sup_congr_left ht hu | |
lemma union_congr_right (hs : s ⊆ t ∪ u) (ht : t ⊆ s ∪ u) : s ∪ u = t ∪ u := sup_congr_right hs ht | |
lemma union_eq_union_iff_left : s ∪ t = s ∪ u ↔ t ⊆ s ∪ u ∧ u ⊆ s ∪ t := sup_eq_sup_iff_left | |
lemma union_eq_union_iff_right : s ∪ u = t ∪ u ↔ s ⊆ t ∪ u ∧ t ⊆ s ∪ u := sup_eq_sup_iff_right | |
/-- | |
To prove a relation on pairs of `finset X`, it suffices to show that it is | |
* symmetric, | |
* it holds when one of the `finset`s is empty, | |
* it holds for pairs of singletons, | |
* if it holds for `[a, c]` and for `[b, c]`, then it holds for `[a ∪ b, c]`. | |
-/ | |
lemma induction_on_union (P : finset α → finset α → Prop) | |
(symm : ∀ {a b}, P a b → P b a) | |
(empty_right : ∀ {a}, P a ∅) | |
(singletons : ∀ {a b}, P {a} {b}) | |
(union_of : ∀ {a b c}, P a c → P b c → P (a ∪ b) c) : | |
∀ a b, P a b := | |
begin | |
intros a b, | |
refine finset.induction_on b empty_right (λ x s xs hi, symm _), | |
rw finset.insert_eq, | |
apply union_of _ (symm hi), | |
refine finset.induction_on a empty_right (λ a t ta hi, symm _), | |
rw finset.insert_eq, | |
exact union_of singletons (symm hi), | |
end | |
lemma _root_.directed.exists_mem_subset_of_finset_subset_bUnion {α ι : Type*} [hn : nonempty ι] | |
{f : ι → set α} (h : directed (⊆) f) | |
{s : finset α} (hs : (s : set α) ⊆ ⋃ i, f i) : ∃ i, (s : set α) ⊆ f i := | |
begin | |
classical, | |
revert hs, | |
apply s.induction_on, | |
{ refine λ _, ⟨hn.some, _⟩, | |
simp only [coe_empty, set.empty_subset], }, | |
{ intros b t hbt htc hbtc, | |
obtain ⟨i : ι , hti : (t : set α) ⊆ f i⟩ := | |
htc (set.subset.trans (t.subset_insert b) hbtc), | |
obtain ⟨j, hbj⟩ : ∃ j, b ∈ f j, | |
by simpa [set.mem_Union₂] using hbtc (t.mem_insert_self b), | |
rcases h j i with ⟨k, hk, hk'⟩, | |
use k, | |
rw [coe_insert, set.insert_subset], | |
exact ⟨hk hbj, trans hti hk'⟩ } | |
end | |
lemma _root_.directed_on.exists_mem_subset_of_finset_subset_bUnion {α ι : Type*} | |
{f : ι → set α} {c : set ι} (hn : c.nonempty) (hc : directed_on (λ i j, f i ⊆ f j) c) | |
{s : finset α} (hs : (s : set α) ⊆ ⋃ i ∈ c, f i) : ∃ i ∈ c, (s : set α) ⊆ f i := | |
begin | |
rw set.bUnion_eq_Union at hs, | |
haveI := set.nonempty_coe_sort.2 hn, | |
obtain ⟨⟨i, hic⟩, hi⟩ := | |
(directed_comp.2 hc.directed_coe).exists_mem_subset_of_finset_subset_bUnion hs, | |
exact ⟨i, hic, hi⟩ | |
end | |
/-! #### inter -/ | |
theorem inter_val_nd (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = ndinter s₁.1 s₂.1 := rfl | |
@[simp] lemma inter_val (s₁ s₂ : finset α) : (s₁ ∩ s₂).1 = s₁.1 ∩ s₂.1 := ndinter_eq_inter s₁.2 | |
@[simp] theorem mem_inter {a : α} {s₁ s₂ : finset α} : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := mem_ndinter | |
theorem mem_of_mem_inter_left {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : | |
a ∈ s₁ := (mem_inter.1 h).1 | |
theorem mem_of_mem_inter_right {a : α} {s₁ s₂ : finset α} (h : a ∈ s₁ ∩ s₂) : | |
a ∈ s₂ := (mem_inter.1 h).2 | |
theorem mem_inter_of_mem {a : α} {s₁ s₂ : finset α} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ := | |
and_imp.1 mem_inter.2 | |
theorem inter_subset_left (s₁ s₂ : finset α) : s₁ ∩ s₂ ⊆ s₁ := λ a, mem_of_mem_inter_left | |
theorem inter_subset_right (s₁ s₂ : finset α) : s₁ ∩ s₂ ⊆ s₂ := λ a, mem_of_mem_inter_right | |
lemma subset_inter {s₁ s₂ u : finset α} : s₁ ⊆ s₂ → s₁ ⊆ u → s₁ ⊆ s₂ ∩ u := | |
by simp only [subset_iff, mem_inter] {contextual:=tt}; intros; split; trivial | |
@[simp, norm_cast] | |
lemma coe_inter (s₁ s₂ : finset α) : ↑(s₁ ∩ s₂) = (s₁ ∩ s₂ : set α) := set.ext $ λ _, mem_inter | |
@[simp] theorem union_inter_cancel_left {s t : finset α} : (s ∪ t) ∩ s = s := | |
by rw [← coe_inj, coe_inter, coe_union, set.union_inter_cancel_left] | |
@[simp] theorem union_inter_cancel_right {s t : finset α} : (s ∪ t) ∩ t = t := | |
by rw [← coe_inj, coe_inter, coe_union, set.union_inter_cancel_right] | |
theorem inter_comm (s₁ s₂ : finset α) : s₁ ∩ s₂ = s₂ ∩ s₁ := | |
ext $ λ _, by simp only [mem_inter, and_comm] | |
@[simp] theorem inter_assoc (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := | |
ext $ λ _, by simp only [mem_inter, and_assoc] | |
theorem inter_left_comm (s₁ s₂ s₃ : finset α) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := | |
ext $ λ _, by simp only [mem_inter, and.left_comm] | |
theorem inter_right_comm (s₁ s₂ s₃ : finset α) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := | |
ext $ λ _, by simp only [mem_inter, and.right_comm] | |
@[simp] lemma inter_self (s : finset α) : s ∩ s = s := ext $ λ _, mem_inter.trans $ and_self _ | |
@[simp] lemma inter_empty (s : finset α) : s ∩ ∅ = ∅ := ext $ λ _, mem_inter.trans $ and_false _ | |
@[simp] lemma empty_inter (s : finset α) : ∅ ∩ s = ∅ := ext $ λ _, mem_inter.trans $ false_and _ | |
@[simp] lemma inter_union_self (s t : finset α) : s ∩ (t ∪ s) = s := | |
by rw [inter_comm, union_inter_cancel_right] | |
@[simp] theorem insert_inter_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₂) : | |
insert a s₁ ∩ s₂ = insert a (s₁ ∩ s₂) := | |
ext $ λ x, have x = a ∨ x ∈ s₂ ↔ x ∈ s₂, from or_iff_right_of_imp $ by rintro rfl; exact h, | |
by simp only [mem_inter, mem_insert, or_and_distrib_left, this] | |
@[simp] theorem inter_insert_of_mem {s₁ s₂ : finset α} {a : α} (h : a ∈ s₁) : | |
s₁ ∩ insert a s₂ = insert a (s₁ ∩ s₂) := | |
by rw [inter_comm, insert_inter_of_mem h, inter_comm] | |
@[simp] theorem insert_inter_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₂) : | |
insert a s₁ ∩ s₂ = s₁ ∩ s₂ := | |
ext $ λ x, have ¬ (x = a ∧ x ∈ s₂), by rintro ⟨rfl, H⟩; exact h H, | |
by simp only [mem_inter, mem_insert, or_and_distrib_right, this, false_or] | |
@[simp] theorem inter_insert_of_not_mem {s₁ s₂ : finset α} {a : α} (h : a ∉ s₁) : | |
s₁ ∩ insert a s₂ = s₁ ∩ s₂ := | |
by rw [inter_comm, insert_inter_of_not_mem h, inter_comm] | |
@[simp] theorem singleton_inter_of_mem {a : α} {s : finset α} (H : a ∈ s) : {a} ∩ s = {a} := | |
show insert a ∅ ∩ s = insert a ∅, by rw [insert_inter_of_mem H, empty_inter] | |
@[simp] theorem singleton_inter_of_not_mem {a : α} {s : finset α} (H : a ∉ s) : {a} ∩ s = ∅ := | |
eq_empty_of_forall_not_mem $ by simp only [mem_inter, mem_singleton]; rintro x ⟨rfl, h⟩; exact H h | |
@[simp] theorem inter_singleton_of_mem {a : α} {s : finset α} (h : a ∈ s) : s ∩ {a} = {a} := | |
by rw [inter_comm, singleton_inter_of_mem h] | |
@[simp] theorem inter_singleton_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : s ∩ {a} = ∅ := | |
by rw [inter_comm, singleton_inter_of_not_mem h] | |
@[mono] | |
lemma inter_subset_inter {x y s t : finset α} (h : x ⊆ y) (h' : s ⊆ t) : x ∩ s ⊆ y ∩ t := | |
begin | |
intros a a_in, | |
rw finset.mem_inter at a_in ⊢, | |
exact ⟨h a_in.1, h' a_in.2⟩ | |
end | |
lemma inter_subset_inter_left (h : t ⊆ u) : s ∩ t ⊆ s ∩ u := inter_subset_inter subset.rfl h | |
lemma inter_subset_inter_right (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := inter_subset_inter h subset.rfl | |
instance {α : Type u} : order_bot (finset α) := | |
{ bot := ∅, bot_le := empty_subset } | |
@[simp] lemma bot_eq_empty {α : Type u} : (⊥ : finset α) = ∅ := rfl | |
instance : distrib_lattice (finset α) := | |
{ le_sup_inf := assume a b c, show (a ∪ b) ∩ (a ∪ c) ⊆ a ∪ b ∩ c, | |
by simp only [subset_iff, mem_inter, mem_union, and_imp, or_imp_distrib] {contextual:=tt}; | |
simp only [true_or, imp_true_iff, true_and, or_true], | |
..finset.lattice } | |
@[simp] theorem union_left_idem (s t : finset α) : s ∪ (s ∪ t) = s ∪ t := sup_left_idem | |
@[simp] theorem union_right_idem (s t : finset α) : s ∪ t ∪ t = s ∪ t := sup_right_idem | |
@[simp] theorem inter_left_idem (s t : finset α) : s ∩ (s ∩ t) = s ∩ t := inf_left_idem | |
@[simp] theorem inter_right_idem (s t : finset α) : s ∩ t ∩ t = s ∩ t := inf_right_idem | |
theorem inter_distrib_left (s t u : finset α) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := inf_sup_left | |
theorem inter_distrib_right (s t u : finset α) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := inf_sup_right | |
theorem union_distrib_left (s t u : finset α) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := sup_inf_left | |
theorem union_distrib_right (s t u : finset α) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := sup_inf_right | |
lemma union_union_distrib_left (s t u : finset α) : s ∪ (t ∪ u) = (s ∪ t) ∪ (s ∪ u) := | |
sup_sup_distrib_left _ _ _ | |
lemma union_union_distrib_right (s t u : finset α) : (s ∪ t) ∪ u = (s ∪ u) ∪ (t ∪ u) := | |
sup_sup_distrib_right _ _ _ | |
lemma inter_inter_distrib_left (s t u : finset α) : s ∩ (t ∩ u) = (s ∩ t) ∩ (s ∩ u) := | |
inf_inf_distrib_left _ _ _ | |
lemma inter_inter_distrib_right (s t u : finset α) : (s ∩ t) ∩ u = (s ∩ u) ∩ (t ∩ u) := | |
inf_inf_distrib_right _ _ _ | |
lemma union_union_union_comm (s t u v : finset α) : (s ∪ t) ∪ (u ∪ v) = (s ∪ u) ∪ (t ∪ v) := | |
sup_sup_sup_comm _ _ _ _ | |
lemma inter_inter_inter_comm (s t u v : finset α) : (s ∩ t) ∩ (u ∩ v) = (s ∩ u) ∩ (t ∩ v) := | |
inf_inf_inf_comm _ _ _ _ | |
lemma union_eq_empty_iff (A B : finset α) : A ∪ B = ∅ ↔ A = ∅ ∧ B = ∅ := sup_eq_bot_iff | |
lemma union_subset_iff : s ∪ t ⊆ u ↔ s ⊆ u ∧ t ⊆ u := (sup_le_iff : s ⊔ t ≤ u ↔ s ≤ u ∧ t ≤ u) | |
lemma subset_inter_iff : s ⊆ t ∩ u ↔ s ⊆ t ∧ s ⊆ u := (le_inf_iff : s ≤ t ⊓ u ↔ s ≤ t ∧ s ≤ u) | |
lemma inter_eq_left_iff_subset (s t : finset α) : s ∩ t = s ↔ s ⊆ t := inf_eq_left | |
lemma inter_eq_right_iff_subset (s t : finset α) : t ∩ s = s ↔ s ⊆ t := inf_eq_right | |
lemma inter_congr_left (ht : s ∩ u ⊆ t) (hu : s ∩ t ⊆ u) : s ∩ t = s ∩ u := inf_congr_left ht hu | |
lemma inter_congr_right (hs : t ∩ u ⊆ s) (ht : s ∩ u ⊆ t) : s ∩ u = t ∩ u := inf_congr_right hs ht | |
lemma inter_eq_inter_iff_left : s ∩ t = s ∩ u ↔ s ∩ u ⊆ t ∧ s ∩ t ⊆ u := inf_eq_inf_iff_left | |
lemma inter_eq_inter_iff_right : s ∩ u = t ∩ u ↔ t ∩ u ⊆ s ∧ s ∩ u ⊆ t := inf_eq_inf_iff_right | |
lemma ite_subset_union (s s' : finset α) (P : Prop) [decidable P] : | |
ite P s s' ⊆ s ∪ s' := ite_le_sup s s' P | |
lemma inter_subset_ite (s s' : finset α) (P : Prop) [decidable P] : | |
s ∩ s' ⊆ ite P s s' := inf_le_ite s s' P | |
/-! ### erase -/ | |
/-- `erase s a` is the set `s - {a}`, that is, the elements of `s` which are | |
not equal to `a`. -/ | |
def erase (s : finset α) (a : α) : finset α := ⟨_, s.2.erase a⟩ | |
@[simp] theorem erase_val (s : finset α) (a : α) : (erase s a).1 = s.1.erase a := rfl | |
@[simp] theorem mem_erase {a b : α} {s : finset α} : a ∈ erase s b ↔ a ≠ b ∧ a ∈ s := | |
s.2.mem_erase_iff | |
lemma not_mem_erase (a : α) (s : finset α) : a ∉ erase s a := s.2.not_mem_erase | |
-- While this can be solved by `simp`, this lemma is eligible for `dsimp` | |
@[nolint simp_nf, simp] theorem erase_empty (a : α) : erase ∅ a = ∅ := rfl | |
@[simp] lemma erase_singleton (a : α) : ({a} : finset α).erase a = ∅ := | |
begin | |
ext x, | |
rw [mem_erase, mem_singleton, not_and_self], | |
refl, | |
end | |
lemma ne_of_mem_erase : b ∈ erase s a → b ≠ a := λ h, (mem_erase.1 h).1 | |
lemma mem_of_mem_erase : b ∈ erase s a → b ∈ s := mem_of_mem_erase | |
lemma mem_erase_of_ne_of_mem : a ≠ b → a ∈ s → a ∈ erase s b := | |
by simp only [mem_erase]; exact and.intro | |
/-- An element of `s` that is not an element of `erase s a` must be | |
`a`. -/ | |
lemma eq_of_mem_of_not_mem_erase (hs : b ∈ s) (hsa : b ∉ s.erase a) : b = a := | |
begin | |
rw [mem_erase, not_and] at hsa, | |
exact not_imp_not.mp hsa hs | |
end | |
theorem erase_insert {a : α} {s : finset α} (h : a ∉ s) : erase (insert a s) a = s := | |
ext $ assume x, by simp only [mem_erase, mem_insert, and_or_distrib_left, not_and_self, false_or]; | |
apply and_iff_right_of_imp; rintro H rfl; exact h H | |
theorem insert_erase {a : α} {s : finset α} (h : a ∈ s) : insert a (erase s a) = s := | |
ext $ assume x, by simp only [mem_insert, mem_erase, or_and_distrib_left, dec_em, true_and]; | |
apply or_iff_right_of_imp; rintro rfl; exact h | |
theorem erase_subset_erase (a : α) {s t : finset α} (h : s ⊆ t) : erase s a ⊆ erase t a := | |
val_le_iff.1 $ erase_le_erase _ $ val_le_iff.2 h | |
theorem erase_subset (a : α) (s : finset α) : erase s a ⊆ s := erase_subset _ _ | |
lemma subset_erase {a : α} {s t : finset α} : s ⊆ t.erase a ↔ s ⊆ t ∧ a ∉ s := | |
⟨λ h, ⟨h.trans (erase_subset _ _), λ ha, not_mem_erase _ _ (h ha)⟩, | |
λ h b hb, mem_erase.2 ⟨ne_of_mem_of_not_mem hb h.2, h.1 hb⟩⟩ | |
@[simp, norm_cast] lemma coe_erase (a : α) (s : finset α) : ↑(erase s a) = (s \ {a} : set α) := | |
set.ext $ λ _, mem_erase.trans $ by rw [and_comm, set.mem_diff, set.mem_singleton_iff]; refl | |
lemma erase_ssubset {a : α} {s : finset α} (h : a ∈ s) : s.erase a ⊂ s := | |
calc s.erase a ⊂ insert a (s.erase a) : ssubset_insert $ not_mem_erase _ _ | |
... = _ : insert_erase h | |
lemma ssubset_iff_exists_subset_erase {s t : finset α} : s ⊂ t ↔ ∃ a ∈ t, s ⊆ t.erase a := | |
begin | |
refine ⟨λ h, _, λ ⟨a, ha, h⟩, ssubset_of_subset_of_ssubset h $ erase_ssubset ha⟩, | |
obtain ⟨a, ht, hs⟩ := (not_subset _ _).1 h.2, | |
exact ⟨a, ht, subset_erase.2 ⟨h.1, hs⟩⟩, | |
end | |
lemma erase_ssubset_insert (s : finset α) (a : α) : s.erase a ⊂ insert a s := | |
ssubset_iff_exists_subset_erase.2 ⟨a, mem_insert_self _ _, erase_subset_erase _ $ subset_insert _ _⟩ | |
@[simp] | |
theorem erase_eq_of_not_mem {a : α} {s : finset α} (h : a ∉ s) : erase s a = s := | |
eq_of_veq $ erase_of_not_mem h | |
@[simp] lemma erase_eq_self : s.erase a = s ↔ a ∉ s := | |
⟨λ h, h ▸ not_mem_erase _ _, erase_eq_of_not_mem⟩ | |
lemma erase_ne_self : s.erase a ≠ s ↔ a ∈ s := erase_eq_self.not_left | |
@[simp] lemma erase_insert_eq_erase (s : finset α) (a : α) : | |
(insert a s).erase a = s.erase a := | |
by by_cases ha : a ∈ s; { simp [ha, erase_insert] } | |
lemma erase_cons {s : finset α} {a : α} (h : a ∉ s) : (s.cons a h).erase a = s := | |
by rw [cons_eq_insert, erase_insert_eq_erase, erase_eq_of_not_mem h] | |
lemma erase_idem {a : α} {s : finset α} : erase (erase s a) a = erase s a := | |
by simp | |
lemma erase_right_comm {a b : α} {s : finset α} : erase (erase s a) b = erase (erase s b) a := | |
by { ext x, simp only [mem_erase, ←and_assoc], rw and_comm (x ≠ a) } | |
theorem subset_insert_iff {a : α} {s t : finset α} : s ⊆ insert a t ↔ erase s a ⊆ t := | |
by simp only [subset_iff, or_iff_not_imp_left, mem_erase, mem_insert, and_imp]; | |
exact forall_congr (λ x, forall_swap) | |
theorem erase_insert_subset (a : α) (s : finset α) : erase (insert a s) a ⊆ s := | |
subset_insert_iff.1 $ subset.rfl | |
theorem insert_erase_subset (a : α) (s : finset α) : s ⊆ insert a (erase s a) := | |
subset_insert_iff.2 $ subset.rfl | |
lemma subset_insert_iff_of_not_mem (h : a ∉ s) : s ⊆ insert a t ↔ s ⊆ t := | |
by rw [subset_insert_iff, erase_eq_of_not_mem h] | |
lemma erase_subset_iff_of_mem (h : a ∈ t) : s.erase a ⊆ t ↔ s ⊆ t := | |
by rw [←subset_insert_iff, insert_eq_of_mem h] | |
lemma erase_inj {x y : α} (s : finset α) (hx : x ∈ s) : s.erase x = s.erase y ↔ x = y := | |
begin | |
refine ⟨λ h, _, congr_arg _⟩, | |
rw eq_of_mem_of_not_mem_erase hx, | |
rw ←h, | |
simp, | |
end | |
lemma erase_inj_on (s : finset α) : set.inj_on s.erase s := λ _ _ _ _, (erase_inj s ‹_›).mp | |
lemma erase_inj_on' (a : α) : {s : finset α | a ∈ s}.inj_on (λ s, erase s a) := | |
λ s hs t ht (h : s.erase a = _), by rw [←insert_erase hs, ←insert_erase ht, h] | |
/-! ### sdiff -/ | |
/-- `s \ t` is the set consisting of the elements of `s` that are not in `t`. -/ | |
instance : has_sdiff (finset α) := ⟨λs₁ s₂, ⟨s₁.1 - s₂.1, nodup_of_le tsub_le_self s₁.2⟩⟩ | |
@[simp] lemma sdiff_val (s₁ s₂ : finset α) : (s₁ \ s₂).val = s₁.val - s₂.val := rfl | |
@[simp] theorem mem_sdiff : a ∈ s \ t ↔ a ∈ s ∧ a ∉ t := mem_sub_of_nodup s.2 | |
@[simp] theorem inter_sdiff_self (s₁ s₂ : finset α) : s₁ ∩ (s₂ \ s₁) = ∅ := | |
eq_empty_of_forall_not_mem $ | |
by simp only [mem_inter, mem_sdiff]; rintro x ⟨h, _, hn⟩; exact hn h | |
instance : generalized_boolean_algebra (finset α) := | |
{ sup_inf_sdiff := λ x y, by { simp only [ext_iff, mem_union, mem_sdiff, inf_eq_inter, sup_eq_union, | |
mem_inter], tauto }, | |
inf_inf_sdiff := λ x y, by { simp only [ext_iff, inter_sdiff_self, inter_empty, inter_assoc, | |
false_iff, inf_eq_inter, not_mem_empty], tauto }, | |
..finset.has_sdiff, | |
..finset.distrib_lattice, | |
..finset.order_bot } | |
lemma not_mem_sdiff_of_mem_right (h : a ∈ t) : a ∉ s \ t := | |
by simp only [mem_sdiff, h, not_true, not_false_iff, and_false] | |
lemma not_mem_sdiff_of_not_mem_left (h : a ∉ s) : a ∉ s \ t := by simpa | |
lemma union_sdiff_of_subset (h : s ⊆ t) : s ∪ (t \ s) = t := sup_sdiff_cancel_right h | |
theorem sdiff_union_of_subset {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : (s₂ \ s₁) ∪ s₁ = s₂ := | |
(union_comm _ _).trans (union_sdiff_of_subset h) | |
lemma inter_sdiff (s t u : finset α) : s ∩ (t \ u) = s ∩ t \ u := by { ext x, simp [and_assoc] } | |
@[simp] lemma sdiff_inter_self (s₁ s₂ : finset α) : (s₂ \ s₁) ∩ s₁ = ∅ := inf_sdiff_self_left | |
@[simp] lemma sdiff_self (s₁ : finset α) : s₁ \ s₁ = ∅ := sdiff_self | |
lemma sdiff_inter_distrib_right (s t u : finset α) : s \ (t ∩ u) = (s \ t) ∪ (s \ u) := sdiff_inf | |
@[simp] lemma sdiff_inter_self_left (s t : finset α) : s \ (s ∩ t) = s \ t := sdiff_inf_self_left | |
@[simp] lemma sdiff_inter_self_right (s t : finset α) : s \ (t ∩ s) = s \ t := sdiff_inf_self_right | |
@[simp] lemma sdiff_empty : s \ ∅ = s := sdiff_bot | |
@[mono] lemma sdiff_subset_sdiff (hst : s ⊆ t) (hvu : v ⊆ u) : s \ u ⊆ t \ v := | |
sdiff_le_sdiff ‹s ≤ t› ‹v ≤ u› | |
@[simp, norm_cast] lemma coe_sdiff (s₁ s₂ : finset α) : ↑(s₁ \ s₂) = (s₁ \ s₂ : set α) := | |
set.ext $ λ _, mem_sdiff | |
@[simp] theorem union_sdiff_self_eq_union : s ∪ (t \ s) = s ∪ t := sup_sdiff_self_right | |
@[simp] theorem sdiff_union_self_eq_union : (s \ t) ∪ t = s ∪ t := sup_sdiff_self_left | |
lemma union_sdiff_left (s t : finset α) : (s ∪ t) \ s = t \ s := sup_sdiff_left_self | |
lemma union_sdiff_right (s t : finset α) : (s ∪ t) \ t = s \ t := sup_sdiff_right_self | |
lemma union_sdiff_symm : s ∪ (t \ s) = t ∪ (s \ t) := sup_sdiff_symm | |
lemma sdiff_union_inter (s t : finset α) : (s \ t) ∪ (s ∩ t) = s := sup_sdiff_inf _ _ | |
@[simp] lemma sdiff_idem (s t : finset α) : s \ t \ t = s \ t := sdiff_idem | |
lemma sdiff_eq_empty_iff_subset : s \ t = ∅ ↔ s ⊆ t := sdiff_eq_bot_iff | |
lemma sdiff_nonempty : (s \ t).nonempty ↔ ¬ s ⊆ t := | |
nonempty_iff_ne_empty.trans sdiff_eq_empty_iff_subset.not | |
@[simp] lemma empty_sdiff (s : finset α) : ∅ \ s = ∅ := bot_sdiff | |
lemma insert_sdiff_of_not_mem (s : finset α) {t : finset α} {x : α} (h : x ∉ t) : | |
(insert x s) \ t = insert x (s \ t) := | |
begin | |
rw [← coe_inj, coe_insert, coe_sdiff, coe_sdiff, coe_insert], | |
exact set.insert_diff_of_not_mem s h | |
end | |
lemma insert_sdiff_of_mem (s : finset α) {x : α} (h : x ∈ t) : (insert x s) \ t = s \ t := | |
begin | |
rw [← coe_inj, coe_sdiff, coe_sdiff, coe_insert], | |
exact set.insert_diff_of_mem s h | |
end | |
@[simp] lemma insert_sdiff_insert (s t : finset α) (x : α) : | |
(insert x s) \ (insert x t) = s \ insert x t := | |
insert_sdiff_of_mem _ (mem_insert_self _ _) | |
lemma sdiff_insert_of_not_mem {x : α} (h : x ∉ s) (t : finset α) : s \ (insert x t) = s \ t := | |
begin | |
refine subset.antisymm (sdiff_subset_sdiff (subset.refl _) (subset_insert _ _)) (λ y hy, _), | |
simp only [mem_sdiff, mem_insert, not_or_distrib] at hy ⊢, | |
exact ⟨hy.1, λ hxy, h $ hxy ▸ hy.1, hy.2⟩ | |
end | |
@[simp] lemma sdiff_subset (s t : finset α) : s \ t ⊆ s := show s \ t ≤ s, from sdiff_le | |
lemma sdiff_ssubset (h : t ⊆ s) (ht : t.nonempty) : s \ t ⊂ s := sdiff_lt ‹t ≤ s› ht.ne_empty | |
lemma union_sdiff_distrib (s₁ s₂ t : finset α) : (s₁ ∪ s₂) \ t = s₁ \ t ∪ s₂ \ t := sup_sdiff | |
lemma sdiff_union_distrib (s t₁ t₂ : finset α) : s \ (t₁ ∪ t₂) = (s \ t₁) ∩ (s \ t₂) := sdiff_sup | |
lemma union_sdiff_self (s t : finset α) : (s ∪ t) \ t = s \ t := sup_sdiff_right_self | |
lemma sdiff_singleton_eq_erase (a : α) (s : finset α) : s \ singleton a = erase s a := | |
by { ext, rw [mem_erase, mem_sdiff, mem_singleton], tauto } | |
@[simp] lemma sdiff_singleton_not_mem_eq_self (s : finset α) {a : α} (ha : a ∉ s) : s \ {a} = s := | |
by simp only [sdiff_singleton_eq_erase, ha, erase_eq_of_not_mem, not_false_iff] | |
lemma sdiff_sdiff_left' (s t u : finset α) : | |
(s \ t) \ u = (s \ t) ∩ (s \ u) := sdiff_sdiff_left' | |
lemma sdiff_insert (s t : finset α) (x : α) : | |
s \ insert x t = (s \ t).erase x := | |
by simp_rw [← sdiff_singleton_eq_erase, insert_eq, | |
sdiff_sdiff_left', sdiff_union_distrib, inter_comm] | |
lemma sdiff_insert_insert_of_mem_of_not_mem {s t : finset α} {x : α} (hxs : x ∈ s) (hxt : x ∉ t) : | |
insert x (s \ insert x t) = s \ t := | |
by rw [sdiff_insert, insert_erase (mem_sdiff.mpr ⟨hxs, hxt⟩)] | |
lemma sdiff_erase {x : α} (hx : x ∈ s) : s \ s.erase x = {x} := | |
begin | |
rw [← sdiff_singleton_eq_erase, sdiff_sdiff_right_self], | |
exact inf_eq_right.2 (singleton_subset_iff.2 hx), | |
end | |
lemma sdiff_sdiff_self_left (s t : finset α) : s \ (s \ t) = s ∩ t := sdiff_sdiff_right_self | |
lemma sdiff_sdiff_eq_self (h : t ⊆ s) : s \ (s \ t) = t := sdiff_sdiff_eq_self h | |
lemma sdiff_eq_sdiff_iff_inter_eq_inter {s t₁ t₂ : finset α} : s \ t₁ = s \ t₂ ↔ s ∩ t₁ = s ∩ t₂ := | |
sdiff_eq_sdiff_iff_inf_eq_inf | |
lemma union_eq_sdiff_union_sdiff_union_inter (s t : finset α) : | |
s ∪ t = (s \ t) ∪ (t \ s) ∪ (s ∩ t) := | |
sup_eq_sdiff_sup_sdiff_sup_inf | |
lemma erase_eq_empty_iff (s : finset α) (a : α) : s.erase a = ∅ ↔ s = ∅ ∨ s = {a} := | |
by rw [←sdiff_singleton_eq_erase, sdiff_eq_empty_iff_subset, subset_singleton_iff] | |
end decidable_eq | |
/-! ### attach -/ | |
/-- `attach s` takes the elements of `s` and forms a new set of elements of the subtype | |
`{x // x ∈ s}`. -/ | |
def attach (s : finset α) : finset {x // x ∈ s} := ⟨attach s.1, nodup_attach.2 s.2⟩ | |
theorem sizeof_lt_sizeof_of_mem [has_sizeof α] {x : α} {s : finset α} (hx : x ∈ s) : | |
sizeof x < sizeof s := by | |
{ cases s, dsimp [sizeof, has_sizeof.sizeof, finset.sizeof], | |
apply lt_add_left, exact multiset.sizeof_lt_sizeof_of_mem hx } | |
@[simp] theorem attach_val (s : finset α) : s.attach.1 = s.1.attach := rfl | |
@[simp] theorem mem_attach (s : finset α) : ∀ x, x ∈ s.attach := mem_attach _ | |
@[simp] theorem attach_empty : attach (∅ : finset α) = ∅ := rfl | |
@[simp] lemma attach_nonempty_iff (s : finset α) : s.attach.nonempty ↔ s.nonempty := | |
by simp [finset.nonempty] | |
@[simp] lemma attach_eq_empty_iff (s : finset α) : s.attach = ∅ ↔ s = ∅ := | |
by simpa [eq_empty_iff_forall_not_mem] | |
/-! ### piecewise -/ | |
section piecewise | |
/-- `s.piecewise f g` is the function equal to `f` on the finset `s`, and to `g` on its | |
complement. -/ | |
def piecewise {α : Type*} {δ : α → Sort*} (s : finset α) (f g : Π i, δ i) [Π j, decidable (j ∈ s)] : | |
Π i, δ i := | |
λi, if i ∈ s then f i else g i | |
variables {δ : α → Sort*} (s : finset α) (f g : Π i, δ i) | |
@[simp] lemma piecewise_insert_self [decidable_eq α] {j : α} [∀ i, decidable (i ∈ insert j s)] : | |
(insert j s).piecewise f g j = f j := | |
by simp [piecewise] | |
@[simp] lemma piecewise_empty [Π i : α, decidable (i ∈ (∅ : finset α))] : piecewise ∅ f g = g := | |
by { ext i, simp [piecewise] } | |
variable [Π j, decidable (j ∈ s)] | |
-- TODO: fix this in norm_cast | |
@[norm_cast move] lemma piecewise_coe [∀ j, decidable (j ∈ (s : set α))] : | |
(s : set α).piecewise f g = s.piecewise f g := | |
by { ext, congr } | |
@[simp, priority 980] | |
lemma piecewise_eq_of_mem {i : α} (hi : i ∈ s) : s.piecewise f g i = f i := by simp [piecewise, hi] | |
@[simp, priority 980] | |
lemma piecewise_eq_of_not_mem {i : α} (hi : i ∉ s) : s.piecewise f g i = g i := | |
by simp [piecewise, hi] | |
lemma piecewise_congr {f f' g g' : Π i, δ i} (hf : ∀ i ∈ s, f i = f' i) (hg : ∀ i ∉ s, g i = g' i) : | |
s.piecewise f g = s.piecewise f' g' := | |
funext $ λ i, if_ctx_congr iff.rfl (hf i) (hg i) | |
@[simp, priority 990] | |
lemma piecewise_insert_of_ne [decidable_eq α] {i j : α} [∀ i, decidable (i ∈ insert j s)] | |
(h : i ≠ j) : (insert j s).piecewise f g i = s.piecewise f g i := | |
by simp [piecewise, h] | |
lemma piecewise_insert [decidable_eq α] (j : α) [∀ i, decidable (i ∈ insert j s)] : | |
(insert j s).piecewise f g = update (s.piecewise f g) j (f j) := | |
by { classical, simp only [← piecewise_coe, coe_insert, ← set.piecewise_insert] } | |
lemma piecewise_cases {i} (p : δ i → Prop) (hf : p (f i)) (hg : p (g i)) : p (s.piecewise f g i) := | |
by by_cases hi : i ∈ s; simpa [hi] | |
lemma piecewise_mem_set_pi {δ : α → Type*} {t : set α} {t' : Π i, set (δ i)} | |
{f g} (hf : f ∈ set.pi t t') (hg : g ∈ set.pi t t') : s.piecewise f g ∈ set.pi t t' := | |
by { classical, rw ← piecewise_coe, exact set.piecewise_mem_pi ↑s hf hg } | |
lemma piecewise_singleton [decidable_eq α] (i : α) : | |
piecewise {i} f g = update g i (f i) := | |
by rw [← insert_emptyc_eq, piecewise_insert, piecewise_empty] | |
lemma piecewise_piecewise_of_subset_left {s t : finset α} [Π i, decidable (i ∈ s)] | |
[Π i, decidable (i ∈ t)] (h : s ⊆ t) (f₁ f₂ g : Π a, δ a) : | |
s.piecewise (t.piecewise f₁ f₂) g = s.piecewise f₁ g := | |
s.piecewise_congr (λ i hi, piecewise_eq_of_mem _ _ _ (h hi)) (λ _ _, rfl) | |
@[simp] lemma piecewise_idem_left (f₁ f₂ g : Π a, δ a) : | |
s.piecewise (s.piecewise f₁ f₂) g = s.piecewise f₁ g := | |
piecewise_piecewise_of_subset_left (subset.refl _) _ _ _ | |
lemma piecewise_piecewise_of_subset_right {s t : finset α} [Π i, decidable (i ∈ s)] | |
[Π i, decidable (i ∈ t)] (h : t ⊆ s) (f g₁ g₂ : Π a, δ a) : | |
s.piecewise f (t.piecewise g₁ g₂) = s.piecewise f g₂ := | |
s.piecewise_congr (λ _ _, rfl) (λ i hi, t.piecewise_eq_of_not_mem _ _ (mt (@h _) hi)) | |
@[simp] lemma piecewise_idem_right (f g₁ g₂ : Π a, δ a) : | |
s.piecewise f (s.piecewise g₁ g₂) = s.piecewise f g₂ := | |
piecewise_piecewise_of_subset_right (subset.refl _) f g₁ g₂ | |
lemma update_eq_piecewise {β : Type*} [decidable_eq α] (f : α → β) (i : α) (v : β) : | |
update f i v = piecewise (singleton i) (λj, v) f := | |
(piecewise_singleton _ _ _).symm | |
lemma update_piecewise [decidable_eq α] (i : α) (v : δ i) : | |
update (s.piecewise f g) i v = s.piecewise (update f i v) (update g i v) := | |
begin | |
ext j, | |
rcases em (j = i) with (rfl|hj); by_cases hs : j ∈ s; simp * | |
end | |
lemma update_piecewise_of_mem [decidable_eq α] {i : α} (hi : i ∈ s) (v : δ i) : | |
update (s.piecewise f g) i v = s.piecewise (update f i v) g := | |
begin | |
rw update_piecewise, | |
refine s.piecewise_congr (λ _ _, rfl) (λ j hj, update_noteq _ _ _), | |
exact λ h, hj (h.symm ▸ hi) | |
end | |
lemma update_piecewise_of_not_mem [decidable_eq α] {i : α} (hi : i ∉ s) (v : δ i) : | |
update (s.piecewise f g) i v = s.piecewise f (update g i v) := | |
begin | |
rw update_piecewise, | |
refine s.piecewise_congr (λ j hj, update_noteq _ _ _) (λ _ _, rfl), | |
exact λ h, hi (h ▸ hj) | |
end | |
lemma piecewise_le_of_le_of_le {δ : α → Type*} [Π i, preorder (δ i)] {f g h : Π i, δ i} | |
(Hf : f ≤ h) (Hg : g ≤ h) : s.piecewise f g ≤ h := | |
λ x, piecewise_cases s f g (≤ h x) (Hf x) (Hg x) | |
lemma le_piecewise_of_le_of_le {δ : α → Type*} [Π i, preorder (δ i)] {f g h : Π i, δ i} | |
(Hf : h ≤ f) (Hg : h ≤ g) : h ≤ s.piecewise f g := | |
λ x, piecewise_cases s f g (λ y, h x ≤ y) (Hf x) (Hg x) | |
lemma piecewise_le_piecewise' {δ : α → Type*} [Π i, preorder (δ i)] {f g f' g' : Π i, δ i} | |
(Hf : ∀ x ∈ s, f x ≤ f' x) (Hg : ∀ x ∉ s, g x ≤ g' x) : s.piecewise f g ≤ s.piecewise f' g' := | |
λ x, by { by_cases hx : x ∈ s; simp [hx, *] } | |
lemma piecewise_le_piecewise {δ : α → Type*} [Π i, preorder (δ i)] {f g f' g' : Π i, δ i} | |
(Hf : f ≤ f') (Hg : g ≤ g') : s.piecewise f g ≤ s.piecewise f' g' := | |
s.piecewise_le_piecewise' (λ x _, Hf x) (λ x _, Hg x) | |
lemma piecewise_mem_Icc_of_mem_of_mem {δ : α → Type*} [Π i, preorder (δ i)] {f f₁ g g₁ : Π i, δ i} | |
(hf : f ∈ set.Icc f₁ g₁) (hg : g ∈ set.Icc f₁ g₁) : | |
s.piecewise f g ∈ set.Icc f₁ g₁ := | |
⟨le_piecewise_of_le_of_le _ hf.1 hg.1, piecewise_le_of_le_of_le _ hf.2 hg.2⟩ | |
lemma piecewise_mem_Icc {δ : α → Type*} [Π i, preorder (δ i)] {f g : Π i, δ i} (h : f ≤ g) : | |
s.piecewise f g ∈ set.Icc f g := | |
piecewise_mem_Icc_of_mem_of_mem _ (set.left_mem_Icc.2 h) (set.right_mem_Icc.2 h) | |
lemma piecewise_mem_Icc' {δ : α → Type*} [Π i, preorder (δ i)] {f g : Π i, δ i} (h : g ≤ f) : | |
s.piecewise f g ∈ set.Icc g f := | |
piecewise_mem_Icc_of_mem_of_mem _ (set.right_mem_Icc.2 h) (set.left_mem_Icc.2 h) | |
end piecewise | |
section decidable_pi_exists | |
variables {s : finset α} | |
instance decidable_dforall_finset {p : Π a ∈ s, Prop} [hp : ∀ a (h : a ∈ s), decidable (p a h)] : | |
decidable (∀ a (h : a ∈ s), p a h) := | |
multiset.decidable_dforall_multiset | |
/-- decidable equality for functions whose domain is bounded by finsets -/ | |
instance decidable_eq_pi_finset {β : α → Type*} [h : ∀ a, decidable_eq (β a)] : | |
decidable_eq (Π a ∈ s, β a) := | |
multiset.decidable_eq_pi_multiset | |
instance decidable_dexists_finset {p : Π a ∈ s, Prop} [hp : ∀ a (h : a ∈ s), decidable (p a h)] : | |
decidable (∃ a (h : a ∈ s), p a h) := | |
multiset.decidable_dexists_multiset | |
end decidable_pi_exists | |
/-! ### filter -/ | |
section filter | |
variables (p q : α → Prop) [decidable_pred p] [decidable_pred q] | |
/-- `filter p s` is the set of elements of `s` that satisfy `p`. -/ | |
def filter (s : finset α) : finset α := ⟨_, s.2.filter p⟩ | |
@[simp] theorem filter_val (s : finset α) : (filter p s).1 = s.1.filter p := rfl | |
@[simp] theorem filter_subset (s : finset α) : s.filter p ⊆ s := filter_subset _ _ | |
variable {p} | |
@[simp] theorem mem_filter {s : finset α} {a : α} : a ∈ s.filter p ↔ a ∈ s ∧ p a := mem_filter | |
lemma mem_of_mem_filter {s : finset α} (x : α) (h : x ∈ s.filter p) : x ∈ s := | |
mem_of_mem_filter h | |
theorem filter_ssubset {s : finset α} : s.filter p ⊂ s ↔ ∃ x ∈ s, ¬ p x := | |
⟨λ h, let ⟨x, hs, hp⟩ := set.exists_of_ssubset h in ⟨x, hs, mt (λ hp, mem_filter.2 ⟨hs, hp⟩) hp⟩, | |
λ ⟨x, hs, hp⟩, ⟨s.filter_subset _, λ h, hp (mem_filter.1 (h hs)).2⟩⟩ | |
variable (p) | |
theorem filter_filter (s : finset α) : (s.filter p).filter q = s.filter (λa, p a ∧ q a) := | |
ext $ assume a, by simp only [mem_filter, and_comm, and.left_comm] | |
lemma filter_true {s : finset α} [h : decidable_pred (λ _, true)] : | |
@finset.filter α (λ _, true) h s = s := | |
by ext; simp | |
@[simp] theorem filter_false {h} (s : finset α) : @filter α (λa, false) h s = ∅ := | |
ext $ assume a, by simp only [mem_filter, and_false]; refl | |
variables {p q} | |
lemma filter_eq_self (s : finset α) : | |
s.filter p = s ↔ ∀ x ∈ s, p x := | |
by simp [finset.ext_iff] | |
/-- If all elements of a `finset` satisfy the predicate `p`, `s.filter p` is `s`. -/ | |
@[simp] lemma filter_true_of_mem {s : finset α} (h : ∀ x ∈ s, p x) : s.filter p = s := | |
(filter_eq_self s).mpr h | |
/-- If all elements of a `finset` fail to satisfy the predicate `p`, `s.filter p` is `∅`. -/ | |
lemma filter_false_of_mem {s : finset α} (h : ∀ x ∈ s, ¬ p x) : s.filter p = ∅ := | |
eq_empty_of_forall_not_mem (by simpa) | |
lemma filter_eq_empty_iff (s : finset α) : | |
(s.filter p = ∅) ↔ ∀ x ∈ s, ¬ p x := | |
begin | |
refine ⟨_, filter_false_of_mem⟩, | |
intros hs, | |
injection hs with hs', | |
rwa filter_eq_nil at hs' | |
end | |
lemma filter_nonempty_iff {s : finset α} : (s.filter p).nonempty ↔ ∃ a ∈ s, p a := | |
by simp only [nonempty_iff_ne_empty, ne.def, filter_eq_empty_iff, not_not, not_forall] | |
lemma filter_congr {s : finset α} (H : ∀ x ∈ s, p x ↔ q x) : filter p s = filter q s := | |
eq_of_veq $ filter_congr H | |
variables (p q) | |
lemma filter_empty : filter p ∅ = ∅ := subset_empty.1 $ filter_subset _ _ | |
lemma filter_subset_filter {s t : finset α} (h : s ⊆ t) : s.filter p ⊆ t.filter p := | |
assume a ha, mem_filter.2 ⟨h (mem_filter.1 ha).1, (mem_filter.1 ha).2⟩ | |
lemma monotone_filter_left : monotone (filter p) := | |
λ _ _, filter_subset_filter p | |
lemma monotone_filter_right (s : finset α) ⦃p q : α → Prop⦄ | |
[decidable_pred p] [decidable_pred q] (h : p ≤ q) : | |
s.filter p ≤ s.filter q := | |
multiset.subset_of_le (multiset.monotone_filter_right s.val h) | |
@[simp, norm_cast] lemma coe_filter (s : finset α) : ↑(s.filter p) = ({x ∈ ↑s | p x} : set α) := | |
set.ext $ λ _, mem_filter | |
lemma subset_coe_filter_of_subset_forall (s : finset α) {t : set α} | |
(h₁ : t ⊆ s) (h₂ : ∀ x ∈ t, p x) : t ⊆ s.filter p := | |
λ x hx, (s.coe_filter p).symm ▸ ⟨h₁ hx, h₂ x hx⟩ | |
theorem filter_singleton (a : α) : filter p (singleton a) = if p a then singleton a else ∅ := | |
by { classical, ext x, simp, split_ifs with h; by_cases h' : x = a; simp [h, h'] } | |
theorem filter_cons_of_pos (a : α) (s : finset α) (ha : a ∉ s) (hp : p a): | |
filter p (cons a s ha) = cons a (filter p s) (mem_filter.not.mpr $ mt and.left ha) := | |
eq_of_veq $ multiset.filter_cons_of_pos s.val hp | |
theorem filter_cons_of_neg (a : α) (s : finset α) (ha : a ∉ s) (hp : ¬p a): | |
filter p (cons a s ha) = filter p s := | |
eq_of_veq $ multiset.filter_cons_of_neg s.val hp | |
theorem filter_disj_union (s : finset α) (t : finset α) (h : ∀ (a : α), a ∈ s → a ∉ t) : | |
filter p (disj_union s t h) = (filter p s).disj_union (filter p t) | |
(λ a hs ht, h a (mem_of_mem_filter _ hs) (mem_of_mem_filter _ ht)) := | |
eq_of_veq $ multiset.filter_add _ _ _ | |
theorem filter_cons {a : α} (s : finset α) (ha : a ∉ s) : | |
filter p (cons a s ha) = (if p a then {a} else ∅ : finset α).disj_union (filter p s) (λ b hb, by | |
{ split_ifs at hb, | |
{ rw finset.mem_singleton.mp hb, | |
exact (mem_filter.not.mpr $ mt and.left ha) }, | |
{ cases hb } }) := | |
begin | |
split_ifs with h, | |
{ rw [filter_cons_of_pos _ _ _ ha h, singleton_disj_union] }, | |
{ rw [filter_cons_of_neg _ _ _ ha h, empty_disj_union] }, | |
end | |
variable [decidable_eq α] | |
theorem filter_union (s₁ s₂ : finset α) : (s₁ ∪ s₂).filter p = s₁.filter p ∪ s₂.filter p := | |
ext $ λ _, by simp only [mem_filter, mem_union, or_and_distrib_right] | |
theorem filter_union_right (s : finset α) : s.filter p ∪ s.filter q = s.filter (λx, p x ∨ q x) := | |
ext $ λ x, by simp only [mem_filter, mem_union, and_or_distrib_left.symm] | |
lemma filter_mem_eq_inter {s t : finset α} [Π i, decidable (i ∈ t)] : | |
s.filter (λ i, i ∈ t) = s ∩ t := | |
ext $ λ i, by rw [mem_filter, mem_inter] | |
lemma filter_inter_distrib (s t : finset α) : (s ∩ t).filter p = s.filter p ∩ t.filter p := | |
by { ext, simp only [mem_filter, mem_inter], exact and_and_distrib_right _ _ _ } | |
theorem filter_inter (s t : finset α) : filter p s ∩ t = filter p (s ∩ t) := | |
by { ext, simp only [mem_inter, mem_filter, and.right_comm] } | |
theorem inter_filter (s t : finset α) : s ∩ filter p t = filter p (s ∩ t) := | |
by rw [inter_comm, filter_inter, inter_comm] | |
theorem filter_insert (a : α) (s : finset α) : | |
filter p (insert a s) = if p a then insert a (filter p s) else filter p s := | |
by { ext x, simp, split_ifs with h; by_cases h' : x = a; simp [h, h'] } | |
theorem filter_erase (a : α) (s : finset α) : filter p (erase s a) = erase (filter p s) a := | |
by { ext x, simp only [and_assoc, mem_filter, iff_self, mem_erase] } | |
theorem filter_or [decidable_pred (λ a, p a ∨ q a)] (s : finset α) : | |
s.filter (λ a, p a ∨ q a) = s.filter p ∪ s.filter q := | |
ext $ λ _, by simp only [mem_filter, mem_union, and_or_distrib_left] | |
theorem filter_and [decidable_pred (λ a, p a ∧ q a)] (s : finset α) : | |
s.filter (λ a, p a ∧ q a) = s.filter p ∩ s.filter q := | |
ext $ λ _, by simp only [mem_filter, mem_inter, and_comm, and.left_comm, and_self] | |
theorem filter_not [decidable_pred (λ a, ¬ p a)] (s : finset α) : | |
s.filter (λ a, ¬ p a) = s \ s.filter p := | |
ext $ by simpa only [mem_filter, mem_sdiff, and_comm, not_and] using λ a, and_congr_right $ | |
λ h : a ∈ s, (imp_iff_right h).symm.trans imp_not_comm | |
theorem sdiff_eq_filter (s₁ s₂ : finset α) : | |
s₁ \ s₂ = filter (∉ s₂) s₁ := ext $ λ _, by simp only [mem_sdiff, mem_filter] | |
lemma sdiff_eq_self (s₁ s₂ : finset α) : s₁ \ s₂ = s₁ ↔ s₁ ∩ s₂ ⊆ ∅ := | |
by { simp [subset.antisymm_iff], | |
split; intro h, | |
{ transitivity' ((s₁ \ s₂) ∩ s₂), mono, simp }, | |
{ calc s₁ \ s₂ | |
⊇ s₁ \ (s₁ ∩ s₂) : by simp [(⊇)] | |
... ⊇ s₁ \ ∅ : by mono using [(⊇)] | |
... ⊇ s₁ : by simp [(⊇)] } } | |
theorem filter_union_filter_neg_eq [decidable_pred (λ a, ¬ p a)] | |
(s : finset α) : s.filter p ∪ s.filter (λa, ¬ p a) = s := | |
by simp only [filter_not, union_sdiff_of_subset (filter_subset p s)] | |
theorem filter_inter_filter_neg_eq [decidable_pred (λ a, ¬ p a)] | |
(s : finset α) : s.filter p ∩ s.filter (λa, ¬ p a) = ∅ := | |
by simp only [filter_not, inter_sdiff_self] | |
lemma subset_union_elim {s : finset α} {t₁ t₂ : set α} (h : ↑s ⊆ t₁ ∪ t₂) : | |
∃ s₁ s₂ : finset α, s₁ ∪ s₂ = s ∧ ↑s₁ ⊆ t₁ ∧ ↑s₂ ⊆ t₂ \ t₁ := | |
begin | |
classical, | |
refine ⟨s.filter (∈ t₁), s.filter (∉ t₁), _, _ , _⟩, | |
{ simp [filter_union_right, em] }, | |
{ intro x, simp }, | |
{ intro x, simp, intros hx hx₂, refine ⟨or.resolve_left (h hx) hx₂, hx₂⟩ } | |
end | |
/- We can simplify an application of filter where the decidability is inferred in "the wrong way" -/ | |
@[simp] lemma filter_congr_decidable {α} (s : finset α) (p : α → Prop) (h : decidable_pred p) | |
[decidable_pred p] : @filter α p h s = s.filter p := | |
by congr | |
section classical | |
open_locale classical | |
/-- The following instance allows us to write `{x ∈ s | p x}` for `finset.filter p s`. | |
Since the former notation requires us to define this for all propositions `p`, and `finset.filter` | |
only works for decidable propositions, the notation `{x ∈ s | p x}` is only compatible with | |
classical logic because it uses `classical.prop_decidable`. | |
We don't want to redo all lemmas of `finset.filter` for `has_sep.sep`, so we make sure that `simp` | |
unfolds the notation `{x ∈ s | p x}` to `finset.filter p s`. If `p` happens to be decidable, the | |
simp-lemma `finset.filter_congr_decidable` will make sure that `finset.filter` uses the right | |
instance for decidability. | |
-/ | |
noncomputable instance {α : Type*} : has_sep α (finset α) := ⟨λ p x, x.filter p⟩ | |
@[simp] lemma sep_def {α : Type*} (s : finset α) (p : α → Prop) : {x ∈ s | p x} = s.filter p := rfl | |
end classical | |
/-- | |
After filtering out everything that does not equal a given value, at most that value remains. | |
This is equivalent to `filter_eq'` with the equality the other way. | |
-/ | |
-- This is not a good simp lemma, as it would prevent `finset.mem_filter` from firing | |
-- on, e.g. `x ∈ s.filter(eq b)`. | |
lemma filter_eq [decidable_eq β] (s : finset β) (b : β) : s.filter (eq b) = ite (b ∈ s) {b} ∅ := | |
begin | |
split_ifs, | |
{ ext, | |
simp only [mem_filter, mem_singleton], | |
exact ⟨λ h, h.2.symm, by { rintro ⟨h⟩, exact ⟨h, rfl⟩ }⟩ }, | |
{ ext, | |
simp only [mem_filter, not_and, iff_false, not_mem_empty], | |
rintro m ⟨e⟩, exact h m } | |
end | |
/-- | |
After filtering out everything that does not equal a given value, at most that value remains. | |
This is equivalent to `filter_eq` with the equality the other way. | |
-/ | |
lemma filter_eq' [decidable_eq β] (s : finset β) (b : β) : | |
s.filter (λ a, a = b) = ite (b ∈ s) {b} ∅ := | |
trans (filter_congr (λ _ _, ⟨eq.symm, eq.symm⟩)) (filter_eq s b) | |
lemma filter_ne [decidable_eq β] (s : finset β) (b : β) : s.filter (λ a, b ≠ a) = s.erase b := | |
by { ext, simp only [mem_filter, mem_erase, ne.def], tauto } | |
lemma filter_ne' [decidable_eq β] (s : finset β) (b : β) : s.filter (λ a, a ≠ b) = s.erase b := | |
trans (filter_congr (λ _ _, ⟨ne.symm, ne.symm⟩)) (filter_ne s b) | |
end filter | |
/-! ### range -/ | |
section range | |
variables {n m l : ℕ} | |
/-- `range n` is the set of natural numbers less than `n`. -/ | |
def range (n : ℕ) : finset ℕ := ⟨_, nodup_range n⟩ | |
@[simp] theorem range_coe (n : ℕ) : (range n).1 = multiset.range n := rfl | |
@[simp] theorem mem_range : m ∈ range n ↔ m < n := mem_range | |
@[simp] theorem range_zero : range 0 = ∅ := rfl | |
@[simp] theorem range_one : range 1 = {0} := rfl | |
theorem range_succ : range (succ n) = insert n (range n) := | |
eq_of_veq $ (range_succ n).trans $ (ndinsert_of_not_mem not_mem_range_self).symm | |
lemma range_add_one : range (n + 1) = insert n (range n) := range_succ | |
@[simp] theorem not_mem_range_self : n ∉ range n := not_mem_range_self | |
@[simp] theorem self_mem_range_succ (n : ℕ) : n ∈ range (n + 1) := multiset.self_mem_range_succ n | |
@[simp] theorem range_subset {n m} : range n ⊆ range m ↔ n ≤ m := range_subset | |
theorem range_mono : monotone range := λ _ _, range_subset.2 | |
lemma mem_range_succ_iff {a b : ℕ} : a ∈ finset.range b.succ ↔ a ≤ b := | |
finset.mem_range.trans nat.lt_succ_iff | |
lemma mem_range_le {n x : ℕ} (hx : x ∈ range n) : x ≤ n := (mem_range.1 hx).le | |
lemma mem_range_sub_ne_zero {n x : ℕ} (hx : x ∈ range n) : n - x ≠ 0 := | |
ne_of_gt $ tsub_pos_of_lt $ mem_range.1 hx | |
@[simp] lemma nonempty_range_iff : (range n).nonempty ↔ n ≠ 0 := | |
⟨λ ⟨k, hk⟩, ((zero_le k).trans_lt $ mem_range.1 hk).ne', | |
λ h, ⟨0, mem_range.2 $ pos_iff_ne_zero.2 h⟩⟩ | |
@[simp] lemma range_eq_empty_iff : range n = ∅ ↔ n = 0 := | |
by rw [← not_nonempty_iff_eq_empty, nonempty_range_iff, not_not] | |
lemma nonempty_range_succ : (range $ n + 1).nonempty := | |
nonempty_range_iff.2 n.succ_ne_zero | |
end range | |
/- useful rules for calculations with quantifiers -/ | |
theorem exists_mem_empty_iff (p : α → Prop) : (∃ x, x ∈ (∅ : finset α) ∧ p x) ↔ false := | |
by simp only [not_mem_empty, false_and, exists_false] | |
lemma exists_mem_insert [decidable_eq α] (a : α) (s : finset α) (p : α → Prop) : | |
(∃ x, x ∈ insert a s ∧ p x) ↔ p a ∨ ∃ x, x ∈ s ∧ p x := | |
by simp only [mem_insert, or_and_distrib_right, exists_or_distrib, exists_eq_left] | |
theorem forall_mem_empty_iff (p : α → Prop) : (∀ x, x ∈ (∅ : finset α) → p x) ↔ true := | |
iff_true_intro $ λ _, false.elim | |
lemma forall_mem_insert [decidable_eq α] (a : α) (s : finset α) (p : α → Prop) : | |
(∀ x, x ∈ insert a s → p x) ↔ p a ∧ ∀ x, x ∈ s → p x := | |
by simp only [mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] | |
end finset | |
/-- Equivalence between the set of natural numbers which are `≥ k` and `ℕ`, given by `n → n - k`. -/ | |
def not_mem_range_equiv (k : ℕ) : {n // n ∉ range k} ≃ ℕ := | |
{ to_fun := λ i, i.1 - k, | |
inv_fun := λ j, ⟨j + k, by simp⟩, | |
left_inv := λ j, | |
begin | |
rw subtype.ext_iff_val, | |
apply tsub_add_cancel_of_le, | |
simpa using j.2 | |
end, | |
right_inv := λ j, add_tsub_cancel_right _ _ } | |
@[simp] lemma coe_not_mem_range_equiv (k : ℕ) : | |
(not_mem_range_equiv k : {n // n ∉ range k} → ℕ) = (λ i, i - k) := rfl | |
@[simp] lemma coe_not_mem_range_equiv_symm (k : ℕ) : | |
((not_mem_range_equiv k).symm : ℕ → {n // n ∉ range k}) = λ j, ⟨j + k, by simp⟩ := rfl | |
/-! ### dedup on list and multiset -/ | |
namespace multiset | |
variable [decidable_eq α] | |
/-- `to_finset s` removes duplicates from the multiset `s` to produce a finset. -/ | |
def to_finset (s : multiset α) : finset α := ⟨_, nodup_dedup s⟩ | |
@[simp] theorem to_finset_val (s : multiset α) : s.to_finset.1 = s.dedup := rfl | |
theorem to_finset_eq {s : multiset α} (n : nodup s) : finset.mk s n = s.to_finset := | |
finset.val_inj.1 n.dedup.symm | |
lemma nodup.to_finset_inj {l l' : multiset α} (hl : nodup l) (hl' : nodup l') | |
(h : l.to_finset = l'.to_finset) : l = l' := | |
by simpa [←to_finset_eq hl, ←to_finset_eq hl'] using h | |
@[simp] lemma mem_to_finset {a : α} {s : multiset α} : a ∈ s.to_finset ↔ a ∈ s := mem_dedup | |
@[simp] lemma to_finset_zero : to_finset (0 : multiset α) = ∅ := rfl | |
@[simp] lemma to_finset_cons (a : α) (s : multiset α) : | |
to_finset (a ::ₘ s) = insert a (to_finset s) := | |
finset.eq_of_veq dedup_cons | |
@[simp] lemma to_finset_singleton (a : α) : to_finset ({a} : multiset α) = {a} := | |
by rw [singleton_eq_cons, to_finset_cons, to_finset_zero, is_lawful_singleton.insert_emptyc_eq] | |
@[simp] lemma to_finset_add (s t : multiset α) : to_finset (s + t) = to_finset s ∪ to_finset t := | |
finset.ext $ by simp | |
@[simp] lemma to_finset_nsmul (s : multiset α) : | |
∀ (n : ℕ) (hn : n ≠ 0), (n • s).to_finset = s.to_finset | |
| 0 h := by contradiction | |
| (n+1) h := | |
begin | |
by_cases n = 0, | |
{ rw [h, zero_add, one_nsmul] }, | |
{ rw [add_nsmul, to_finset_add, one_nsmul, to_finset_nsmul n h, finset.union_idempotent] } | |
end | |
@[simp] lemma to_finset_inter (s t : multiset α) : to_finset (s ∩ t) = to_finset s ∩ to_finset t := | |
finset.ext $ by simp | |
@[simp] lemma to_finset_union (s t : multiset α) : (s ∪ t).to_finset = s.to_finset ∪ t.to_finset := | |
by ext; simp | |
@[simp] theorem to_finset_eq_empty {m : multiset α} : m.to_finset = ∅ ↔ m = 0 := | |
finset.val_inj.symm.trans multiset.dedup_eq_zero | |
@[simp] lemma to_finset_subset (s t : multiset α) : s.to_finset ⊆ t.to_finset ↔ s ⊆ t := | |
by simp only [finset.subset_iff, multiset.subset_iff, multiset.mem_to_finset] | |
end multiset | |
namespace finset | |
@[simp] lemma val_to_finset [decidable_eq α] (s : finset α) : s.val.to_finset = s := | |
by { ext, rw [multiset.mem_to_finset, ←mem_def] } | |
lemma val_le_iff_val_subset {a : finset α} {b : multiset α} : a.val ≤ b ↔ a.val ⊆ b := | |
multiset.le_iff_subset a.nodup | |
end finset | |
namespace list | |
variables [decidable_eq α] {l l' : list α} {a : α} | |
/-- `to_finset l` removes duplicates from the list `l` to produce a finset. -/ | |
def to_finset (l : list α) : finset α := multiset.to_finset l | |
@[simp] theorem to_finset_val (l : list α) : l.to_finset.1 = (l.dedup : multiset α) := rfl | |
@[simp] theorem to_finset_coe (l : list α) : (l : multiset α).to_finset = l.to_finset := rfl | |
lemma to_finset_eq (n : nodup l) : @finset.mk α l n = l.to_finset := multiset.to_finset_eq n | |
@[simp] lemma mem_to_finset : a ∈ l.to_finset ↔ a ∈ l := mem_dedup | |
@[simp] lemma to_finset_nil : to_finset (@nil α) = ∅ := rfl | |
@[simp] lemma to_finset_cons : to_finset (a :: l) = insert a (to_finset l) := | |
finset.eq_of_veq $ by by_cases h : a ∈ l; simp [finset.insert_val', multiset.dedup_cons, h] | |
lemma to_finset_surj_on : set.surj_on to_finset {l : list α | l.nodup} set.univ := | |
by { rintro ⟨⟨l⟩, hl⟩ _, exact ⟨l, hl, (to_finset_eq hl).symm⟩ } | |
theorem to_finset_surjective : surjective (to_finset : list α → finset α) := | |
λ s, let ⟨l, _, hls⟩ := to_finset_surj_on (set.mem_univ s) in ⟨l, hls⟩ | |
lemma to_finset_eq_iff_perm_dedup : l.to_finset = l'.to_finset ↔ l.dedup ~ l'.dedup := | |
by simp [finset.ext_iff, perm_ext (nodup_dedup _) (nodup_dedup _)] | |
lemma to_finset.ext_iff {a b : list α} : a.to_finset = b.to_finset ↔ ∀ x, x ∈ a ↔ x ∈ b := | |
by simp only [finset.ext_iff, mem_to_finset] | |
lemma to_finset.ext : (∀ x, x ∈ l ↔ x ∈ l') → l.to_finset = l'.to_finset := to_finset.ext_iff.mpr | |
lemma to_finset_eq_of_perm (l l' : list α) (h : l ~ l') : l.to_finset = l'.to_finset := | |
to_finset_eq_iff_perm_dedup.mpr h.dedup | |
lemma perm_of_nodup_nodup_to_finset_eq (hl : nodup l) (hl' : nodup l') | |
(h : l.to_finset = l'.to_finset) : l ~ l' := | |
by { rw ←multiset.coe_eq_coe, exact multiset.nodup.to_finset_inj hl hl' h } | |
@[simp] lemma to_finset_append : to_finset (l ++ l') = l.to_finset ∪ l'.to_finset := | |
begin | |
induction l with hd tl hl, | |
{ simp }, | |
{ simp [hl] } | |
end | |
@[simp] lemma to_finset_reverse {l : list α} : to_finset l.reverse = l.to_finset := | |
to_finset_eq_of_perm _ _ (reverse_perm l) | |
lemma to_finset_repeat_of_ne_zero {n : ℕ} (hn : n ≠ 0) : (list.repeat a n).to_finset = {a} := | |
by { ext x, simp [hn, list.mem_repeat] } | |
@[simp] lemma to_finset_union (l l' : list α) : (l ∪ l').to_finset = l.to_finset ∪ l'.to_finset := | |
by { ext, simp } | |
@[simp] lemma to_finset_inter (l l' : list α) : (l ∩ l').to_finset = l.to_finset ∩ l'.to_finset := | |
by { ext, simp } | |
@[simp] lemma to_finset_eq_empty_iff (l : list α) : l.to_finset = ∅ ↔ l = nil := by cases l; simp | |
end list | |
namespace finset | |
/-! ### map -/ | |
section map | |
open function | |
/-- When `f` is an embedding of `α` in `β` and `s` is a finset in `α`, then `s.map f` is the image | |
finset in `β`. The embedding condition guarantees that there are no duplicates in the image. -/ | |
def map (f : α ↪ β) (s : finset α) : finset β := ⟨s.1.map f, s.2.map f.2⟩ | |
@[simp] theorem map_val (f : α ↪ β) (s : finset α) : (map f s).1 = s.1.map f := rfl | |
@[simp] theorem map_empty (f : α ↪ β) : (∅ : finset α).map f = ∅ := rfl | |
variables {f : α ↪ β} {s : finset α} | |
@[simp] theorem mem_map {b : β} : b ∈ s.map f ↔ ∃ a ∈ s, f a = b := | |
mem_map.trans $ by simp only [exists_prop]; refl | |
@[simp] lemma mem_map_equiv {f : α ≃ β} {b : β} : b ∈ s.map f.to_embedding ↔ f.symm b ∈ s := | |
by { rw mem_map, exact ⟨by { rintro ⟨a, H, rfl⟩, simpa }, λ h, ⟨_, h, by simp⟩⟩ } | |
lemma mem_map' (f : α ↪ β) {a} {s : finset α} : f a ∈ s.map f ↔ a ∈ s := mem_map_of_injective f.2 | |
lemma mem_map_of_mem (f : α ↪ β) {a} {s : finset α} : a ∈ s → f a ∈ s.map f := (mem_map' _).2 | |
lemma forall_mem_map {f : α ↪ β} {s : finset α} {p : Π a, a ∈ s.map f → Prop} : | |
(∀ y ∈ s.map f, p y H) ↔ ∀ x ∈ s, p (f x) (mem_map_of_mem _ H) := | |
⟨λ h y hy, h (f y) (mem_map_of_mem _ hy), λ h x hx, | |
by { obtain ⟨y, hy, rfl⟩ := mem_map.1 hx, exact h _ hy }⟩ | |
lemma apply_coe_mem_map (f : α ↪ β) (s : finset α) (x : s) : f x ∈ s.map f := | |
mem_map_of_mem f x.prop | |
@[simp, norm_cast] theorem coe_map (f : α ↪ β) (s : finset α) : (s.map f : set β) = f '' s := | |
set.ext $ λ x, mem_map.trans set.mem_image_iff_bex.symm | |
theorem coe_map_subset_range (f : α ↪ β) (s : finset α) : (s.map f : set β) ⊆ set.range f := | |
calc ↑(s.map f) = f '' s : coe_map f s | |
... ⊆ set.range f : set.image_subset_range f ↑s | |
/-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. | |
-/ | |
lemma map_perm {σ : equiv.perm α} (hs : {a | σ a ≠ a} ⊆ s) : s.map (σ : α ↪ α) = s := | |
coe_injective $ (coe_map _ _).trans $ set.image_perm hs | |
theorem map_to_finset [decidable_eq α] [decidable_eq β] {s : multiset α} : | |
s.to_finset.map f = (s.map f).to_finset := | |
ext $ λ _, by simp only [mem_map, multiset.mem_map, exists_prop, multiset.mem_to_finset] | |
@[simp] theorem map_refl : s.map (embedding.refl _) = s := | |
ext $ λ _, by simpa only [mem_map, exists_prop] using exists_eq_right | |
@[simp] theorem map_cast_heq {α β} (h : α = β) (s : finset α) : | |
s.map (equiv.cast h).to_embedding == s := | |
by { subst h, simp } | |
theorem map_map {g : β ↪ γ} : (s.map f).map g = s.map (f.trans g) := | |
eq_of_veq $ by simp only [map_val, multiset.map_map]; refl | |
lemma map_comm {β'} {f : β ↪ γ} {g : α ↪ β} {f' : α ↪ β'} {g' : β' ↪ γ} | |
(h_comm : ∀ a, f (g a) = g' (f' a)) : | |
(s.map g).map f = (s.map f').map g' := | |
by simp_rw [map_map, embedding.trans, function.comp, h_comm] | |
lemma _root_.function.semiconj.finset_map {f : α ↪ β} {ga : α ↪ α} {gb : β ↪ β} | |
(h : function.semiconj f ga gb) : | |
function.semiconj (map f) (map ga) (map gb) := | |
λ s, map_comm h | |
lemma _root_.function.commute.finset_map {f g : α ↪ α} (h : function.commute f g) : | |
function.commute (map f) (map g) := | |
h.finset_map | |
@[simp] theorem map_subset_map {s₁ s₂ : finset α} : s₁.map f ⊆ s₂.map f ↔ s₁ ⊆ s₂ := | |
⟨λ h x xs, (mem_map' _).1 $ h $ (mem_map' f).2 xs, | |
λ h, by simp [subset_def, map_subset_map h]⟩ | |
/-- Associate to an embedding `f` from `α` to `β` the order embedding that maps a finset to its | |
image under `f`. -/ | |
def map_embedding (f : α ↪ β) : finset α ↪o finset β := | |
order_embedding.of_map_le_iff (map f) (λ _ _, map_subset_map) | |
@[simp] theorem map_inj {s₁ s₂ : finset α} : s₁.map f = s₂.map f ↔ s₁ = s₂ := | |
(map_embedding f).injective.eq_iff | |
lemma map_injective (f : α ↪ β) : injective (map f) := (map_embedding f).injective | |
@[simp] theorem map_embedding_apply : map_embedding f s = map f s := rfl | |
theorem map_filter {p : β → Prop} [decidable_pred p] : | |
(s.map f).filter p = (s.filter (p ∘ f)).map f := | |
eq_of_veq (map_filter _ _ _) | |
/-- A helper lemma to produce a default proof for `finset.map_disj_union`. -/ | |
theorem map_disj_union_aux {f : α ↪ β} {s₁ s₂ : finset α} : | |
(∀ a, a ∈ s₁ → a ∉ s₂) ↔ ∀ a, a ∈ map f s₁ → a ∉ map f s₂ := | |
by simp_rw [forall_mem_map, mem_map'] | |
theorem map_disj_union {f : α ↪ β} (s₁ s₂ : finset α) (h) (h' := map_disj_union_aux.1 h) : | |
(s₁.disj_union s₂ h).map f = (s₁.map f).disj_union (s₂.map f) h' := | |
eq_of_veq $ multiset.map_add _ _ _ | |
/-- A version of `finset.map_disj_union` for writing in the other direction. -/ | |
theorem map_disj_union' {f : α ↪ β} (s₁ s₂ : finset α) (h') (h := map_disj_union_aux.2 h') : | |
(s₁.disj_union s₂ h).map f = (s₁.map f).disj_union (s₂.map f) h' := | |
map_disj_union _ _ _ | |
theorem map_union [decidable_eq α] [decidable_eq β] | |
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∪ s₂).map f = s₁.map f ∪ s₂.map f := | |
coe_injective $ by simp only [coe_map, coe_union, set.image_union] | |
theorem map_inter [decidable_eq α] [decidable_eq β] | |
{f : α ↪ β} (s₁ s₂ : finset α) : (s₁ ∩ s₂).map f = s₁.map f ∩ s₂.map f := | |
coe_injective $ by simp only [coe_map, coe_inter, set.image_inter f.injective] | |
@[simp] theorem map_singleton (f : α ↪ β) (a : α) : map f {a} = {f a} := | |
coe_injective $ by simp only [coe_map, coe_singleton, set.image_singleton] | |
@[simp] lemma map_insert [decidable_eq α] [decidable_eq β] (f : α ↪ β) (a : α) (s : finset α) : | |
(insert a s).map f = insert (f a) (s.map f) := | |
by simp only [insert_eq, map_union, map_singleton] | |
@[simp] lemma map_cons (f : α ↪ β) (a : α) (s : finset α) (ha : a ∉ s) : | |
(cons a s ha).map f = cons (f a) (s.map f) (by simpa using ha) := | |
eq_of_veq $ multiset.map_cons f a s.val | |
@[simp] theorem map_eq_empty : s.map f = ∅ ↔ s = ∅ := | |
⟨λ h, eq_empty_of_forall_not_mem $ | |
λ a m, ne_empty_of_mem (mem_map_of_mem _ m) h, λ e, e.symm ▸ rfl⟩ | |
@[simp] lemma map_nonempty : (s.map f).nonempty ↔ s.nonempty := | |
by rw [nonempty_iff_ne_empty, nonempty_iff_ne_empty, ne.def, map_eq_empty] | |
alias map_nonempty ↔ _ nonempty.map | |
lemma attach_map_val {s : finset α} : s.attach.map (embedding.subtype _) = s := | |
eq_of_veq $ by rw [map_val, attach_val]; exact attach_map_val _ | |
lemma disjoint_range_add_left_embedding (a b : ℕ) : | |
disjoint (range a) (map (add_left_embedding a) (range b)) := | |
begin | |
intros k hk, | |
simp only [exists_prop, mem_range, inf_eq_inter, mem_map, add_left_embedding_apply, | |
mem_inter] at hk, | |
obtain ⟨a, haQ, ha⟩ := hk.2, | |
simpa [← ha] using hk.1, | |
end | |
lemma disjoint_range_add_right_embedding (a b : ℕ) : | |
disjoint (range a) (map (add_right_embedding a) (range b)) := | |
begin | |
intros k hk, | |
simp only [exists_prop, mem_range, inf_eq_inter, mem_map, add_left_embedding_apply, | |
mem_inter] at hk, | |
obtain ⟨a, haQ, ha⟩ := hk.2, | |
simpa [← ha] using hk.1, | |
end | |
end map | |
lemma range_add_one' (n : ℕ) : | |
range (n + 1) = insert 0 ((range n).map ⟨λi, i + 1, assume i j, nat.succ.inj⟩) := | |
by ext (⟨⟩ | ⟨n⟩); simp [nat.succ_eq_add_one, nat.zero_lt_succ n] | |
/-! ### image -/ | |
section image | |
variables [decidable_eq β] | |
/-- `image f s` is the forward image of `s` under `f`. -/ | |
def image (f : α → β) (s : finset α) : finset β := (s.1.map f).to_finset | |
@[simp] theorem image_val (f : α → β) (s : finset α) : (image f s).1 = (s.1.map f).dedup := rfl | |
@[simp] theorem image_empty (f : α → β) : (∅ : finset α).image f = ∅ := rfl | |
variables {f g : α → β} {s : finset α} {t : finset β} {a : α} {b c : β} | |
@[simp] lemma mem_image : b ∈ s.image f ↔ ∃ a ∈ s, f a = b := | |
by simp only [mem_def, image_val, mem_dedup, multiset.mem_map, exists_prop] | |
lemma mem_image_of_mem (f : α → β) {a} (h : a ∈ s) : f a ∈ s.image f := mem_image.2 ⟨_, h, rfl⟩ | |
@[simp] lemma mem_image_const : c ∈ s.image (const α b) ↔ s.nonempty ∧ b = c := | |
by { rw mem_image, simp only [exists_prop, const_apply, exists_and_distrib_right], refl } | |
lemma mem_image_const_self : b ∈ s.image (const α b) ↔ s.nonempty := | |
mem_image_const.trans $ and_iff_left rfl | |
instance [can_lift β α] : can_lift (finset β) (finset α) := | |
{ cond := λ s, ∀ x ∈ s, can_lift.cond α x, | |
coe := image can_lift.coe, | |
prf := | |
begin | |
rintro ⟨⟨l⟩, hd : l.nodup⟩ hl, | |
lift l to list α using hl, | |
exact ⟨⟨l, hd.of_map _⟩, ext $ λ a, by simp⟩, | |
end } | |
lemma image_congr (h : (s : set α).eq_on f g) : finset.image f s = finset.image g s := | |
by { ext, simp_rw mem_image, exact bex_congr (λ x hx, by rw h hx) } | |
lemma _root_.function.injective.mem_finset_image (hf : injective f) : f a ∈ s.image f ↔ a ∈ s := | |
begin | |
refine ⟨λ h, _, finset.mem_image_of_mem f⟩, | |
obtain ⟨y, hy, heq⟩ := mem_image.1 h, | |
exact hf heq ▸ hy, | |
end | |
lemma filter_mem_image_eq_image (f : α → β) (s : finset α) (t : finset β) (h : ∀ x ∈ s, f x ∈ t) : | |
t.filter (λ y, y ∈ s.image f) = s.image f := | |
by { ext, rw [mem_filter, mem_image], | |
simp only [and_imp, exists_prop, and_iff_right_iff_imp, exists_imp_distrib], | |
rintros x xel rfl, exact h _ xel } | |
lemma fiber_nonempty_iff_mem_image (f : α → β) (s : finset α) (y : β) : | |
(s.filter (λ x, f x = y)).nonempty ↔ y ∈ s.image f := | |
by simp [finset.nonempty] | |
@[simp, norm_cast] lemma coe_image {f : α → β} : ↑(s.image f) = f '' ↑s := | |
set.ext $ λ _, mem_image.trans set.mem_image_iff_bex.symm | |
protected lemma nonempty.image (h : s.nonempty) (f : α → β) : (s.image f).nonempty := | |
let ⟨a, ha⟩ := h in ⟨f a, mem_image_of_mem f ha⟩ | |
@[simp] lemma nonempty.image_iff (f : α → β) : (s.image f).nonempty ↔ s.nonempty := | |
⟨λ ⟨y, hy⟩, let ⟨x, hx, _⟩ := mem_image.mp hy in ⟨x, hx⟩, λ h, h.image f⟩ | |
theorem image_to_finset [decidable_eq α] {s : multiset α} : | |
s.to_finset.image f = (s.map f).to_finset := | |
ext $ λ _, by simp only [mem_image, multiset.mem_to_finset, exists_prop, multiset.mem_map] | |
lemma image_val_of_inj_on (H : set.inj_on f s) : (image f s).1 = s.1.map f := (s.2.map_on H).dedup | |
@[simp] lemma image_id [decidable_eq α] : s.image id = s := | |
ext $ λ _, by simp only [mem_image, exists_prop, id, exists_eq_right] | |
@[simp] theorem image_id' [decidable_eq α] : s.image (λ x, x) = s := image_id | |
theorem image_image [decidable_eq γ] {g : β → γ} : (s.image f).image g = s.image (g ∘ f) := | |
eq_of_veq $ by simp only [image_val, dedup_map_dedup_eq, multiset.map_map] | |
lemma image_comm {β'} [decidable_eq β'] [decidable_eq γ] {f : β → γ} {g : α → β} | |
{f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : | |
(s.image g).image f = (s.image f').image g' := | |
by simp_rw [image_image, comp, h_comm] | |
lemma _root_.function.semiconj.finset_image [decidable_eq α] {f : α → β} {ga : α → α} {gb : β → β} | |
(h : function.semiconj f ga gb) : | |
function.semiconj (image f) (image ga) (image gb) := | |
λ s, image_comm h | |
lemma _root_.function.commute.finset_image [decidable_eq α] {f g : α → α} | |
(h : function.commute f g) : | |
function.commute (image f) (image g) := | |
h.finset_image | |
theorem image_subset_image {s₁ s₂ : finset α} (h : s₁ ⊆ s₂) : s₁.image f ⊆ s₂.image f := | |
by simp only [subset_def, image_val, subset_dedup', dedup_subset', | |
multiset.map_subset_map h] | |
lemma image_subset_iff : s.image f ⊆ t ↔ ∀ x ∈ s, f x ∈ t := | |
calc s.image f ⊆ t ↔ f '' ↑s ⊆ ↑t : by norm_cast | |
... ↔ _ : set.image_subset_iff | |
theorem image_mono (f : α → β) : monotone (finset.image f) := λ _ _, image_subset_image | |
lemma image_subset_image_iff {t : finset α} (hf : injective f) : s.image f ⊆ t.image f ↔ s ⊆ t := | |
by { simp_rw ←coe_subset, push_cast, exact set.image_subset_image_iff hf } | |
theorem coe_image_subset_range : ↑(s.image f) ⊆ set.range f := | |
calc ↑(s.image f) = f '' ↑s : coe_image | |
... ⊆ set.range f : set.image_subset_range f ↑s | |
theorem image_filter {p : β → Prop} [decidable_pred p] : | |
(s.image f).filter p = (s.filter (p ∘ f)).image f := | |
ext $ λ b, by simp only [mem_filter, mem_image, exists_prop]; exact | |
⟨by rintro ⟨⟨x, h1, rfl⟩, h2⟩; exact ⟨x, ⟨h1, h2⟩, rfl⟩, | |
by rintro ⟨x, ⟨h1, h2⟩, rfl⟩; exact ⟨⟨x, h1, rfl⟩, h2⟩⟩ | |
theorem image_union [decidable_eq α] {f : α → β} (s₁ s₂ : finset α) : | |
(s₁ ∪ s₂).image f = s₁.image f ∪ s₂.image f := | |
ext $ λ _, by simp only [mem_image, mem_union, exists_prop, or_and_distrib_right, | |
exists_or_distrib] | |
lemma image_inter_subset [decidable_eq α] (f : α → β) (s t : finset α) : | |
(s ∩ t).image f ⊆ s.image f ∩ t.image f := | |
subset_inter (image_subset_image $ inter_subset_left _ _) $ | |
image_subset_image $ inter_subset_right _ _ | |
lemma image_inter_of_inj_on [decidable_eq α] {f : α → β} (s t : finset α) | |
(hf : set.inj_on f (s ∪ t)) : | |
(s ∩ t).image f = s.image f ∩ t.image f := | |
(image_inter_subset _ _ _).antisymm $ λ x, begin | |
simp only [mem_inter, mem_image], | |
rintro ⟨⟨a, ha, rfl⟩, b, hb, h⟩, | |
exact ⟨a, ⟨ha, by rwa ←hf (or.inr hb) (or.inl ha) h⟩, rfl⟩, | |
end | |
lemma image_inter [decidable_eq α] (s₁ s₂ : finset α) (hf : injective f) : | |
(s₁ ∩ s₂).image f = s₁.image f ∩ s₂.image f := | |
image_inter_of_inj_on _ _ $ hf.inj_on _ | |
@[simp] theorem image_singleton (f : α → β) (a : α) : image f {a} = {f a} := | |
ext $ λ x, by simpa only [mem_image, exists_prop, mem_singleton, exists_eq_left] using eq_comm | |
@[simp] theorem image_insert [decidable_eq α] (f : α → β) (a : α) (s : finset α) : | |
(insert a s).image f = insert (f a) (s.image f) := | |
by simp only [insert_eq, image_singleton, image_union] | |
lemma erase_image_subset_image_erase [decidable_eq α] (f : α → β) (s : finset α) (a : α) : | |
(s.image f).erase (f a) ⊆ (s.erase a).image f := | |
begin | |
simp only [subset_iff, and_imp, exists_prop, mem_image, exists_imp_distrib, mem_erase], | |
rintro b hb x hx rfl, | |
exact ⟨_, ⟨ne_of_apply_ne f hb, hx⟩, rfl⟩, | |
end | |
@[simp] lemma image_erase [decidable_eq α] {f : α → β} (hf : injective f) (s : finset α) (a : α) : | |
(s.erase a).image f = (s.image f).erase (f a) := | |
begin | |
refine (erase_image_subset_image_erase _ _ _).antisymm' (λ b, _), | |
simp only [mem_image, exists_prop, mem_erase], | |
rintro ⟨a', ⟨haa', ha'⟩, rfl⟩, | |
exact ⟨hf.ne haa', a', ha', rfl⟩, | |
end | |
@[simp] theorem image_eq_empty : s.image f = ∅ ↔ s = ∅ := | |
⟨λ h, eq_empty_of_forall_not_mem $ | |
λ a m, ne_empty_of_mem (mem_image_of_mem _ m) h, λ e, e.symm ▸ rfl⟩ | |
lemma mem_range_iff_mem_finset_range_of_mod_eq' [decidable_eq α] {f : ℕ → α} {a : α} {n : ℕ} | |
(hn : 0 < n) (h : ∀ i, f (i % n) = f i) : | |
a ∈ set.range f ↔ a ∈ (finset.range n).image (λi, f i) := | |
begin | |
split, | |
{ rintros ⟨i, hi⟩, | |
simp only [mem_image, exists_prop, mem_range], | |
exact ⟨i % n, nat.mod_lt i hn, (rfl.congr hi).mp (h i)⟩ }, | |
{ rintro h, | |
simp only [mem_image, exists_prop, set.mem_range, mem_range] at *, | |
rcases h with ⟨i, hi, ha⟩, | |
exact ⟨i, ha⟩ } | |
end | |
lemma mem_range_iff_mem_finset_range_of_mod_eq [decidable_eq α] {f : ℤ → α} {a : α} {n : ℕ} | |
(hn : 0 < n) (h : ∀ i, f (i % n) = f i) : | |
a ∈ set.range f ↔ a ∈ (finset.range n).image (λi, f i) := | |
suffices (∃ i, f (i % n) = a) ↔ ∃ i, i < n ∧ f ↑i = a, by simpa [h], | |
have hn' : 0 < (n : ℤ), from int.coe_nat_lt.mpr hn, | |
iff.intro | |
(assume ⟨i, hi⟩, | |
have 0 ≤ i % ↑n, from int.mod_nonneg _ (ne_of_gt hn'), | |
⟨int.to_nat (i % n), | |
by rw [←int.coe_nat_lt, int.to_nat_of_nonneg this]; exact ⟨int.mod_lt_of_pos i hn', hi⟩⟩) | |
(assume ⟨i, hi, ha⟩, | |
⟨i, by rw [int.mod_eq_of_lt (int.coe_zero_le _) (int.coe_nat_lt_coe_nat_of_lt hi), ha]⟩) | |
lemma range_add (a b : ℕ) : range (a + b) = range a ∪ (range b).map (add_left_embedding a) := | |
by { rw [←val_inj, union_val], exact multiset.range_add_eq_union a b } | |
@[simp] lemma attach_image_val [decidable_eq α] {s : finset α} : s.attach.image subtype.val = s := | |
eq_of_veq $ by rw [image_val, attach_val, multiset.attach_map_val, dedup_eq_self] | |
@[simp] lemma attach_image_coe [decidable_eq α] {s : finset α} : s.attach.image coe = s := | |
finset.attach_image_val | |
@[simp] lemma attach_insert [decidable_eq α] {a : α} {s : finset α} : | |
attach (insert a s) = insert (⟨a, mem_insert_self a s⟩ : {x // x ∈ insert a s}) | |
((attach s).image (λx, ⟨x.1, mem_insert_of_mem x.2⟩)) := | |
ext $ λ ⟨x, hx⟩, ⟨or.cases_on (mem_insert.1 hx) | |
(λ h : x = a, λ _, mem_insert.2 $ or.inl $ subtype.eq h) | |
(λ h : x ∈ s, λ _, mem_insert_of_mem $ mem_image.2 $ ⟨⟨x, h⟩, mem_attach _ _, subtype.eq rfl⟩), | |
λ _, finset.mem_attach _ _⟩ | |
theorem map_eq_image (f : α ↪ β) (s : finset α) : s.map f = s.image f := | |
eq_of_veq (s.map f).2.dedup.symm | |
lemma image_const {s : finset α} (h : s.nonempty) (b : β) : s.image (λa, b) = singleton b := | |
ext $ assume b', by simp only [mem_image, exists_prop, exists_and_distrib_right, | |
h.bex, true_and, mem_singleton, eq_comm] | |
@[simp] lemma map_erase [decidable_eq α] (f : α ↪ β) (s : finset α) (a : α) : | |
(s.erase a).map f = (s.map f).erase (f a) := | |
by { simp_rw map_eq_image, exact s.image_erase f.2 a } | |
/-! ### Subtype -/ | |
/-- Given a finset `s` and a predicate `p`, `s.subtype p` is the finset of `subtype p` whose | |
elements belong to `s`. -/ | |
protected def subtype {α} (p : α → Prop) [decidable_pred p] (s : finset α) : finset (subtype p) := | |
(s.filter p).attach.map ⟨λ x, ⟨x.1, (finset.mem_filter.1 x.2).2⟩, | |
λ x y H, subtype.eq $ subtype.mk.inj H⟩ | |
@[simp] lemma mem_subtype {p : α → Prop} [decidable_pred p] {s : finset α} : | |
∀ {a : subtype p}, a ∈ s.subtype p ↔ (a : α) ∈ s | |
| ⟨a, ha⟩ := by simp [finset.subtype, ha] | |
lemma subtype_eq_empty {p : α → Prop} [decidable_pred p] {s : finset α} : | |
s.subtype p = ∅ ↔ ∀ x, p x → x ∉ s := | |
by simp [ext_iff, subtype.forall, subtype.coe_mk]; refl | |
@[mono] lemma subtype_mono {p : α → Prop} [decidable_pred p] : monotone (finset.subtype p) := | |
λ s t h x hx, mem_subtype.2 $ h $ mem_subtype.1 hx | |
/-- `s.subtype p` converts back to `s.filter p` with | |
`embedding.subtype`. -/ | |
@[simp] lemma subtype_map (p : α → Prop) [decidable_pred p] : | |
(s.subtype p).map (embedding.subtype _) = s.filter p := | |
begin | |
ext x, | |
simp [and_comm _ (_ = _), @and.left_comm _ (_ = _), and_comm (p x) (x ∈ s)] | |
end | |
/-- If all elements of a `finset` satisfy the predicate `p`, | |
`s.subtype p` converts back to `s` with `embedding.subtype`. -/ | |
lemma subtype_map_of_mem {p : α → Prop} [decidable_pred p] (h : ∀ x ∈ s, p x) : | |
(s.subtype p).map (embedding.subtype _) = s := | |
by rw [subtype_map, filter_true_of_mem h] | |
/-- If a `finset` of a subtype is converted to the main type with | |
`embedding.subtype`, all elements of the result have the property of | |
the subtype. -/ | |
lemma property_of_mem_map_subtype {p : α → Prop} (s : finset {x // p x}) {a : α} | |
(h : a ∈ s.map (embedding.subtype _)) : p a := | |
begin | |
rcases mem_map.1 h with ⟨x, hx, rfl⟩, | |
exact x.2 | |
end | |
/-- If a `finset` of a subtype is converted to the main type with | |
`embedding.subtype`, the result does not contain any value that does | |
not satisfy the property of the subtype. -/ | |
lemma not_mem_map_subtype_of_not_property {p : α → Prop} (s : finset {x // p x}) | |
{a : α} (h : ¬ p a) : a ∉ (s.map (embedding.subtype _)) := | |
mt s.property_of_mem_map_subtype h | |
/-- If a `finset` of a subtype is converted to the main type with | |
`embedding.subtype`, the result is a subset of the set giving the | |
subtype. -/ | |
lemma map_subtype_subset {t : set α} (s : finset t) : ↑(s.map (embedding.subtype _)) ⊆ t := | |
begin | |
intros a ha, | |
rw mem_coe at ha, | |
convert property_of_mem_map_subtype s ha | |
end | |
lemma subset_image_iff {s : set α} : ↑t ⊆ f '' s ↔ ∃ s' : finset α, ↑s' ⊆ s ∧ s'.image f = t := | |
begin | |
split, swap, | |
{ rintro ⟨t, ht, rfl⟩, rw [coe_image], exact set.image_subset f ht }, | |
intro h, | |
letI : can_lift β s := ⟨f ∘ coe, λ y, y ∈ f '' s, λ y ⟨x, hxt, hy⟩, ⟨⟨x, hxt⟩, hy⟩⟩, | |
lift t to finset s using h, | |
refine ⟨t.map (embedding.subtype _), map_subtype_subset _, _⟩, | |
ext y, simp | |
end | |
lemma range_sdiff_zero {n : ℕ} : range (n + 1) \ {0} = (range n).image nat.succ := | |
begin | |
induction n with k hk, | |
{ simp }, | |
nth_rewrite 1 range_succ, | |
rw [range_succ, image_insert, ←hk, insert_sdiff_of_not_mem], | |
simp | |
end | |
end image | |
lemma _root_.multiset.to_finset_map [decidable_eq α] [decidable_eq β] (f : α → β) (m : multiset α) : | |
(m.map f).to_finset = m.to_finset.image f := | |
finset.val_inj.1 (multiset.dedup_map_dedup_eq _ _).symm | |
section to_list | |
/-- Produce a list of the elements in the finite set using choice. -/ | |
@[reducible] noncomputable def to_list (s : finset α) : list α := s.1.to_list | |
lemma nodup_to_list (s : finset α) : s.to_list.nodup := | |
by { rw [to_list, ←multiset.coe_nodup, multiset.coe_to_list], exact s.nodup } | |
@[simp] lemma mem_to_list {a : α} (s : finset α) : a ∈ s.to_list ↔ a ∈ s := | |
by { rw [to_list, ←multiset.mem_coe, multiset.coe_to_list], exact iff.rfl } | |
@[simp] lemma to_list_empty : (∅ : finset α).to_list = [] := by simp [to_list] | |
@[simp, norm_cast] | |
lemma coe_to_list (s : finset α) : (s.to_list : multiset α) = s.val := by { classical, ext, simp } | |
@[simp] lemma to_list_to_finset [decidable_eq α] (s : finset α) : s.to_list.to_finset = s := | |
by { ext, simp } | |
lemma exists_list_nodup_eq [decidable_eq α] (s : finset α) : | |
∃ (l : list α), l.nodup ∧ l.to_finset = s := | |
⟨s.to_list, s.nodup_to_list, s.to_list_to_finset⟩ | |
lemma to_list_cons {a : α} {s : finset α} (h : a ∉ s) : (cons a s h).to_list ~ a :: s.to_list := | |
(list.perm_ext (nodup_to_list _) (by simp [h, nodup_to_list s])).2 $ | |
λ x, by simp only [list.mem_cons_iff, finset.mem_to_list, finset.mem_cons] | |
lemma to_list_insert [decidable_eq α] {a : α} {s : finset α} (h : a ∉ s) : | |
(insert a s).to_list ~ a :: s.to_list := | |
cons_eq_insert _ _ h ▸ to_list_cons _ | |
end to_list | |
section bUnion | |
/-! | |
### bUnion | |
This section is about the bounded union of an indexed family `t : α → finset β` of finite sets | |
over a finite set `s : finset α`. | |
-/ | |
variables [decidable_eq β] {s s₁ s₂ : finset α} {t t₁ t₂ : α → finset β} | |
/-- `bUnion s t` is the union of `t x` over `x ∈ s`. | |
(This was formerly `bind` due to the monad structure on types with `decidable_eq`.) -/ | |
protected def bUnion (s : finset α) (t : α → finset β) : finset β := | |
(s.1.bind (λ a, (t a).1)).to_finset | |
@[simp] theorem bUnion_val (s : finset α) (t : α → finset β) : | |
(s.bUnion t).1 = (s.1.bind (λ a, (t a).1)).dedup := rfl | |
@[simp] theorem bUnion_empty : finset.bUnion ∅ t = ∅ := rfl | |
@[simp] lemma mem_bUnion {b : β} : b ∈ s.bUnion t ↔ ∃ a ∈ s, b ∈ t a := | |
by simp only [mem_def, bUnion_val, mem_dedup, mem_bind, exists_prop] | |
@[simp, norm_cast] lemma coe_bUnion : (s.bUnion t : set β) = ⋃ x ∈ (s : set α), t x := | |
by simp only [set.ext_iff, mem_bUnion, set.mem_Union, iff_self, mem_coe, implies_true_iff] | |
@[simp] theorem bUnion_insert [decidable_eq α] {a : α} : (insert a s).bUnion t = t a ∪ s.bUnion t := | |
ext $ λ x, by simp only [mem_bUnion, exists_prop, mem_union, mem_insert, | |
or_and_distrib_right, exists_or_distrib, exists_eq_left] | |
-- ext $ λ x, by simp [or_and_distrib_right, exists_or_distrib] | |
lemma bUnion_congr (hs : s₁ = s₂) (ht : ∀ a ∈ s₁, t₁ a = t₂ a) : s₁.bUnion t₁ = s₂.bUnion t₂ := | |
ext $ λ x, by simp [hs, ht] { contextual := tt } | |
theorem bUnion_subset {s' : finset β} : s.bUnion t ⊆ s' ↔ ∀ x ∈ s, t x ⊆ s' := | |
by simp only [subset_iff, mem_bUnion]; exact | |
⟨λ H a ha b hb, H ⟨a, ha, hb⟩, λ H b ⟨a, ha, hb⟩, H a ha hb⟩ | |
@[simp] lemma singleton_bUnion {a : α} : finset.bUnion {a} t = t a := | |
by { classical, rw [← insert_emptyc_eq, bUnion_insert, bUnion_empty, union_empty] } | |
theorem bUnion_inter (s : finset α) (f : α → finset β) (t : finset β) : | |
s.bUnion f ∩ t = s.bUnion (λ x, f x ∩ t) := | |
begin | |
ext x, | |
simp only [mem_bUnion, mem_inter], | |
tauto | |
end | |
theorem inter_bUnion (t : finset β) (s : finset α) (f : α → finset β) : | |
t ∩ s.bUnion f = s.bUnion (λ x, t ∩ f x) := | |
by rw [inter_comm, bUnion_inter]; simp [inter_comm] | |
theorem image_bUnion [decidable_eq γ] {f : α → β} {s : finset α} {t : β → finset γ} : | |
(s.image f).bUnion t = s.bUnion (λa, t (f a)) := | |
by haveI := classical.dec_eq α; exact | |
finset.induction_on s rfl (λ a s has ih, | |
by simp only [image_insert, bUnion_insert, ih]) | |
theorem bUnion_image [decidable_eq γ] {s : finset α} {t : α → finset β} {f : β → γ} : | |
(s.bUnion t).image f = s.bUnion (λa, (t a).image f) := | |
by haveI := classical.dec_eq α; exact | |
finset.induction_on s rfl (λ a s has ih, | |
by simp only [bUnion_insert, image_union, ih]) | |
lemma bUnion_bUnion [decidable_eq γ] (s : finset α) (f : α → finset β) (g : β → finset γ) : | |
(s.bUnion f).bUnion g = s.bUnion (λ a, (f a).bUnion g) := | |
begin | |
ext, | |
simp only [finset.mem_bUnion, exists_prop], | |
simp_rw [←exists_and_distrib_right, ←exists_and_distrib_left, and_assoc], | |
rw exists_comm, | |
end | |
theorem bind_to_finset [decidable_eq α] (s : multiset α) (t : α → multiset β) : | |
(s.bind t).to_finset = s.to_finset.bUnion (λa, (t a).to_finset) := | |
ext $ λ x, by simp only [multiset.mem_to_finset, mem_bUnion, multiset.mem_bind, exists_prop] | |
lemma bUnion_mono (h : ∀ a ∈ s, t₁ a ⊆ t₂ a) : s.bUnion t₁ ⊆ s.bUnion t₂ := | |
have ∀ b a, a ∈ s → b ∈ t₁ a → (∃ (a : α), a ∈ s ∧ b ∈ t₂ a), | |
from assume b a ha hb, ⟨a, ha, finset.mem_of_subset (h a ha) hb⟩, | |
by simpa only [subset_iff, mem_bUnion, exists_imp_distrib, and_imp, exists_prop] | |
lemma bUnion_subset_bUnion_of_subset_left (t : α → finset β) (h : s₁ ⊆ s₂) : | |
s₁.bUnion t ⊆ s₂.bUnion t := | |
begin | |
intro x, | |
simp only [and_imp, mem_bUnion, exists_prop], | |
exact Exists.imp (λ a ha, ⟨h ha.1, ha.2⟩) | |
end | |
lemma subset_bUnion_of_mem (u : α → finset β) {x : α} (xs : x ∈ s) : u x ⊆ s.bUnion u := | |
singleton_bUnion.superset.trans $ bUnion_subset_bUnion_of_subset_left u $ singleton_subset_iff.2 xs | |
@[simp] lemma bUnion_subset_iff_forall_subset {α β : Type*} [decidable_eq β] | |
{s : finset α} {t : finset β} {f : α → finset β} : s.bUnion f ⊆ t ↔ ∀ x ∈ s, f x ⊆ t := | |
⟨λ h x hx, (subset_bUnion_of_mem f hx).trans h, | |
λ h x hx, let ⟨a, ha₁, ha₂⟩ := mem_bUnion.mp hx in h _ ha₁ ha₂⟩ | |
lemma bUnion_singleton {f : α → β} : s.bUnion (λa, {f a}) = s.image f := | |
ext $ λ x, by simp only [mem_bUnion, mem_image, mem_singleton, eq_comm] | |
@[simp] lemma bUnion_singleton_eq_self [decidable_eq α] : s.bUnion (singleton : α → finset α) = s := | |
by { rw bUnion_singleton, exact image_id } | |
lemma filter_bUnion (s : finset α) (f : α → finset β) (p : β → Prop) [decidable_pred p] : | |
(s.bUnion f).filter p = s.bUnion (λ a, (f a).filter p) := | |
begin | |
ext b, | |
simp only [mem_bUnion, exists_prop, mem_filter], | |
split, | |
{ rintro ⟨⟨a, ha, hba⟩, hb⟩, | |
exact ⟨a, ha, hba, hb⟩ }, | |
{ rintro ⟨a, ha, hba, hb⟩, | |
exact ⟨⟨a, ha, hba⟩, hb⟩ } | |
end | |
lemma bUnion_filter_eq_of_maps_to [decidable_eq α] {s : finset α} {t : finset β} {f : α → β} | |
(h : ∀ x ∈ s, f x ∈ t) : | |
t.bUnion (λa, s.filter $ (λc, f c = a)) = s := | |
ext $ λ b, by simpa using h b | |
lemma image_bUnion_filter_eq [decidable_eq α] (s : finset β) (g : β → α) : | |
(s.image g).bUnion (λa, s.filter $ (λc, g c = a)) = s := | |
bUnion_filter_eq_of_maps_to (λ x, mem_image_of_mem g) | |
lemma erase_bUnion (f : α → finset β) (s : finset α) (b : β) : | |
(s.bUnion f).erase b = s.bUnion (λ x, (f x).erase b) := | |
by { ext, simp only [finset.mem_bUnion, iff_self, exists_and_distrib_left, finset.mem_erase] } | |
@[simp] lemma bUnion_nonempty : (s.bUnion t).nonempty ↔ ∃ x ∈ s, (t x).nonempty := | |
by simp [finset.nonempty, ← exists_and_distrib_left, @exists_swap α] | |
lemma nonempty.bUnion (hs : s.nonempty) (ht : ∀ x ∈ s, (t x).nonempty) : (s.bUnion t).nonempty := | |
bUnion_nonempty.2 $ hs.imp $ λ x hx, ⟨hx, ht x hx⟩ | |
end bUnion | |
/-! ### disjoint -/ | |
--TODO@Yaël: Kill lemmas duplicate with `boolean_algebra` | |
section disjoint | |
variables [decidable_eq α] [decidable_eq β] {f : α → β} {s t u : finset α} {a b : α} | |
lemma disjoint_left : disjoint s t ↔ ∀ ⦃a⦄, a ∈ s → a ∉ t := | |
by simp only [_root_.disjoint, inf_eq_inter, le_iff_subset, subset_iff, mem_inter, not_and, | |
and_imp]; refl | |
lemma disjoint_val : disjoint s t ↔ s.1.disjoint t.1 := disjoint_left | |
lemma disjoint_iff_inter_eq_empty : disjoint s t ↔ s ∩ t = ∅ := disjoint_iff | |
instance decidable_disjoint (U V : finset α) : decidable (disjoint U V) := | |
decidable_of_decidable_of_iff (by apply_instance) eq_bot_iff | |
lemma disjoint_right : disjoint s t ↔ ∀ ⦃a⦄, a ∈ t → a ∉ s := by rw [disjoint.comm, disjoint_left] | |
lemma disjoint_iff_ne : disjoint s t ↔ ∀ a ∈ s, ∀ b ∈ t, a ≠ b := | |
by simp only [disjoint_left, imp_not_comm, forall_eq'] | |
lemma _root_.disjoint.forall_ne_finset (h : disjoint s t) (ha : a ∈ s) (hb : b ∈ t) : a ≠ b := | |
disjoint_iff_ne.1 h _ ha _ hb | |
lemma not_disjoint_iff : ¬ disjoint s t ↔ ∃ a, a ∈ s ∧ a ∈ t := | |
not_forall.trans $ exists_congr $ λ a, not_not.trans mem_inter | |
lemma disjoint_of_subset_left (h : s ⊆ u) (d : disjoint u t) : disjoint s t := | |
disjoint_left.2 (λ x m₁, (disjoint_left.1 d) (h m₁)) | |
lemma disjoint_of_subset_right (h : t ⊆ u) (d : disjoint s u) : disjoint s t := | |
disjoint_right.2 (λ x m₁, (disjoint_right.1 d) (h m₁)) | |
@[simp] theorem disjoint_empty_left (s : finset α) : disjoint ∅ s := disjoint_bot_left | |
@[simp] theorem disjoint_empty_right (s : finset α) : disjoint s ∅ := disjoint_bot_right | |
@[simp] lemma disjoint_singleton_left : disjoint (singleton a) s ↔ a ∉ s := | |
by simp only [disjoint_left, mem_singleton, forall_eq] | |
@[simp] lemma disjoint_singleton_right : disjoint s (singleton a) ↔ a ∉ s := | |
disjoint.comm.trans disjoint_singleton_left | |
@[simp] lemma disjoint_singleton : disjoint ({a} : finset α) {b} ↔ a ≠ b := | |
by rw [disjoint_singleton_left, mem_singleton] | |
@[simp] lemma disjoint_insert_left : disjoint (insert a s) t ↔ a ∉ t ∧ disjoint s t := | |
by simp only [disjoint_left, mem_insert, or_imp_distrib, forall_and_distrib, forall_eq] | |
@[simp] lemma disjoint_insert_right : disjoint s (insert a t) ↔ a ∉ s ∧ disjoint s t := | |
disjoint.comm.trans $ by rw [disjoint_insert_left, disjoint.comm] | |
@[simp] lemma disjoint_union_left : disjoint (s ∪ t) u ↔ disjoint s u ∧ disjoint t u := | |
by simp only [disjoint_left, mem_union, or_imp_distrib, forall_and_distrib] | |
@[simp] lemma disjoint_union_right : disjoint s (t ∪ u) ↔ disjoint s t ∧ disjoint s u := | |
by simp only [disjoint_right, mem_union, or_imp_distrib, forall_and_distrib] | |
lemma sdiff_disjoint : disjoint (t \ s) s := disjoint_left.2 $ assume a ha, (mem_sdiff.1 ha).2 | |
lemma disjoint_sdiff : disjoint s (t \ s) := sdiff_disjoint.symm | |
lemma disjoint_sdiff_inter (s t : finset α) : disjoint (s \ t) (s ∩ t) := | |
disjoint_of_subset_right (inter_subset_right _ _) sdiff_disjoint | |
lemma sdiff_eq_self_iff_disjoint : s \ t = s ↔ disjoint s t := sdiff_eq_self_iff_disjoint' | |
lemma sdiff_eq_self_of_disjoint (h : disjoint s t) : s \ t = s := sdiff_eq_self_iff_disjoint.2 h | |
lemma disjoint_self_iff_empty (s : finset α) : disjoint s s ↔ s = ∅ := disjoint_self | |
lemma disjoint_bUnion_left {ι : Type*} (s : finset ι) (f : ι → finset α) (t : finset α) : | |
disjoint (s.bUnion f) t ↔ (∀ i ∈ s, disjoint (f i) t) := | |
begin | |
classical, | |
refine s.induction _ _, | |
{ simp only [forall_mem_empty_iff, bUnion_empty, disjoint_empty_left] }, | |
{ assume i s his ih, | |
simp only [disjoint_union_left, bUnion_insert, his, forall_mem_insert, ih] } | |
end | |
lemma disjoint_bUnion_right {ι : Type*} (s : finset α) (t : finset ι) (f : ι → finset α) : | |
disjoint s (t.bUnion f) ↔ ∀ i ∈ t, disjoint s (f i) := | |
by simpa only [disjoint.comm] using disjoint_bUnion_left t f s | |
lemma disjoint_filter {p q : α → Prop} [decidable_pred p] [decidable_pred q] : | |
disjoint (s.filter p) (s.filter q) ↔ ∀ x ∈ s, p x → ¬ q x := | |
by split; simp [disjoint_left] {contextual := tt} | |
lemma disjoint_filter_filter {p q : α → Prop} [decidable_pred p] [decidable_pred q] : | |
(disjoint s t) → disjoint (s.filter p) (t.filter q) := | |
disjoint.mono (filter_subset _ _) (filter_subset _ _) | |
lemma disjoint_filter_filter_neg (s : finset α) (p : α → Prop) [decidable_pred p] : | |
disjoint (s.filter p) (s.filter $ λ a, ¬ p a) := | |
(disjoint_filter.2 $ λ a _, id).symm | |
@[simp, norm_cast] lemma disjoint_coe : disjoint (s : set α) t ↔ disjoint s t := | |
by { rw [finset.disjoint_left, set.disjoint_left], refl } | |
@[simp, norm_cast] lemma pairwise_disjoint_coe {ι : Type*} {s : set ι} {f : ι → finset α} : | |
s.pairwise_disjoint (λ i, f i : ι → set α) ↔ s.pairwise_disjoint f := | |
forall₅_congr $ λ _ _ _ _ _, disjoint_coe | |
@[simp] lemma _root_.disjoint.of_image_finset (h : disjoint (s.image f) (t.image f)) : | |
disjoint s t := | |
disjoint_iff_ne.2 $ λ a ha b hb, ne_of_apply_ne f $ h.forall_ne_finset | |
(mem_image_of_mem _ ha) (mem_image_of_mem _ hb) | |
@[simp] lemma disjoint_image {f : α → β} (hf : injective f) : | |
disjoint (s.image f) (t.image f) ↔ disjoint s t := | |
begin | |
simp only [disjoint_iff_ne, mem_image, exists_prop, exists_imp_distrib, and_imp], | |
refine ⟨λ h a ha b hb hab, h _ _ ha rfl _ _ hb rfl $ congr_arg _ hab, _⟩, | |
rintro h _ a ha rfl _ b hb rfl, | |
exact hf.ne (h _ ha _ hb), | |
end | |
@[simp] lemma disjoint_map {f : α ↪ β} : disjoint (s.map f) (t.map f) ↔ disjoint s t := | |
by { simp_rw map_eq_image, exact disjoint_image f.injective } | |
end disjoint | |
/-! ### choose -/ | |
section choose | |
variables (p : α → Prop) [decidable_pred p] (l : finset α) | |
/-- Given a finset `l` and a predicate `p`, associate to a proof that there is a unique element of | |
`l` satisfying `p` this unique element, as an element of the corresponding subtype. -/ | |
def choose_x (hp : (∃! a, a ∈ l ∧ p a)) : { a // a ∈ l ∧ p a } := | |
multiset.choose_x p l.val hp | |
/-- Given a finset `l` and a predicate `p`, associate to a proof that there is a unique element of | |
`l` satisfying `p` this unique element, as an element of the ambient type. -/ | |
def choose (hp : ∃! a, a ∈ l ∧ p a) : α := choose_x p l hp | |
lemma choose_spec (hp : ∃! a, a ∈ l ∧ p a) : choose p l hp ∈ l ∧ p (choose p l hp) := | |
(choose_x p l hp).property | |
lemma choose_mem (hp : ∃! a, a ∈ l ∧ p a) : choose p l hp ∈ l := (choose_spec _ _ _).1 | |
lemma choose_property (hp : ∃! a, a ∈ l ∧ p a) : p (choose p l hp) := (choose_spec _ _ _).2 | |
end choose | |
section pairwise | |
variables {s : finset α} | |
lemma pairwise_subtype_iff_pairwise_finset' (r : β → β → Prop) (f : α → β) : | |
pairwise (r on λ x : s, f x) ↔ (s : set α).pairwise (r on f) := | |
begin | |
refine ⟨λ h x hx y hy hxy, h ⟨x, hx⟩ ⟨y, hy⟩ (by simpa only [subtype.mk_eq_mk, ne.def]), _⟩, | |
rintros h ⟨x, hx⟩ ⟨y, hy⟩ hxy, | |
exact h hx hy (subtype.mk_eq_mk.not.mp hxy) | |
end | |
lemma pairwise_subtype_iff_pairwise_finset (r : α → α → Prop) : | |
pairwise (r on λ x : s, x) ↔ (s : set α).pairwise r := | |
pairwise_subtype_iff_pairwise_finset' r id | |
lemma pairwise_cons' {a : α} (ha : a ∉ s) (r : β → β → Prop) (f : α → β) : | |
pairwise (r on λ a : s.cons a ha, f a) ↔ | |
pairwise (r on λ a : s, f a) ∧ ∀ b ∈ s, r (f a) (f b) ∧ r (f b) (f a) := | |
begin | |
simp only [pairwise_subtype_iff_pairwise_finset', finset.coe_cons, set.pairwise_insert, | |
finset.mem_coe, and.congr_right_iff], | |
exact λ hsr, ⟨λ h b hb, h b hb $ by { rintro rfl, contradiction }, λ h b hb _, h b hb⟩, | |
end | |
lemma pairwise_cons {a : α} (ha : a ∉ s) (r : α → α → Prop) : | |
pairwise (r on λ a : s.cons a ha, a) ↔ pairwise (r on λ a : s, a) ∧ ∀ b ∈ s, r a b ∧ r b a := | |
pairwise_cons' ha r id | |
end pairwise | |
end finset | |
namespace equiv | |
/-- Given an equivalence `α` to `β`, produce an equivalence between `finset α` and `finset β`. -/ | |
protected def finset_congr (e : α ≃ β) : finset α ≃ finset β := | |
{ to_fun := λ s, s.map e.to_embedding, | |
inv_fun := λ s, s.map e.symm.to_embedding, | |
left_inv := λ s, by simp [finset.map_map], | |
right_inv := λ s, by simp [finset.map_map] } | |
@[simp] lemma finset_congr_apply (e : α ≃ β) (s : finset α) : | |
e.finset_congr s = s.map e.to_embedding := | |
rfl | |
@[simp] lemma finset_congr_refl : (equiv.refl α).finset_congr = equiv.refl _ := by { ext, simp } | |
@[simp] lemma finset_congr_symm (e : α ≃ β) : e.finset_congr.symm = e.symm.finset_congr := rfl | |
@[simp] lemma finset_congr_trans (e : α ≃ β) (e' : β ≃ γ) : | |
e.finset_congr.trans (e'.finset_congr) = (e.trans e').finset_congr := | |
by { ext, simp [-finset.mem_map, -equiv.trans_to_embedding] } | |
lemma finset_congr_to_embedding (e : α ≃ β) : | |
e.finset_congr.to_embedding = (finset.map_embedding e.to_embedding).to_embedding := rfl | |
/-- | |
Inhabited types are equivalent to `option β` for some `β` by identifying `default α` with `none`. | |
-/ | |
def sigma_equiv_option_of_inhabited (α : Type u) [inhabited α] [decidable_eq α] : | |
Σ (β : Type u), α ≃ option β := | |
⟨{x : α // x ≠ default}, | |
{ to_fun := λ (x : α), if h : x = default then none else some ⟨x, h⟩, | |
inv_fun := option.elim default coe, | |
left_inv := λ x, by { dsimp only, split_ifs; simp [*] }, | |
right_inv := begin | |
rintro (_|⟨x,h⟩), | |
{ simp }, | |
{ dsimp only, | |
split_ifs with hi, | |
{ simpa [h] using hi }, | |
{ simp } } | |
end }⟩ | |
end equiv | |
namespace multiset | |
variable [decidable_eq α] | |
lemma disjoint_to_finset {m1 m2 : multiset α} : | |
_root_.disjoint m1.to_finset m2.to_finset ↔ m1.disjoint m2 := | |
begin | |
rw finset.disjoint_iff_ne, | |
refine ⟨λ h a ha1 ha2, _, _⟩, | |
{ rw ← multiset.mem_to_finset at ha1 ha2, | |
exact h _ ha1 _ ha2 rfl }, | |
{ rintros h a ha b hb rfl, | |
rw multiset.mem_to_finset at ha hb, | |
exact h ha hb } | |
end | |
end multiset | |
namespace list | |
variables [decidable_eq α] {l l' : list α} | |
lemma disjoint_to_finset_iff_disjoint : _root_.disjoint l.to_finset l'.to_finset ↔ l.disjoint l' := | |
multiset.disjoint_to_finset | |
end list | |