Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Fox Thomson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Fox Thomson | |
-/ | |
import data.fintype.basic | |
import computability.language | |
import tactic.norm_num | |
/-! | |
# Deterministic Finite Automata | |
This file contains the definition of a Deterministic Finite Automaton (DFA), a state machine which | |
determines whether a string (implemented as a list over an arbitrary alphabet) is in a regular set | |
in linear time. | |
Note that this definition allows for Automaton with infinite states, a `fintype` instance must be | |
supplied for true DFA's. | |
-/ | |
universes u v | |
/-- A DFA is a set of states (`σ`), a transition function from state to state labelled by the | |
alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`). -/ | |
structure DFA (α : Type u) (σ : Type v) := | |
(step : σ → α → σ) | |
(start : σ) | |
(accept : set σ) | |
namespace DFA | |
variables {α : Type u} {σ : Type v} (M : DFA α σ) | |
instance [inhabited σ] : inhabited (DFA α σ) := | |
⟨DFA.mk (λ _ _, default) default ∅⟩ | |
/-- `M.eval_from s x` evaluates `M` with input `x` starting from the state `s`. -/ | |
def eval_from (start : σ) : list α → σ := | |
list.foldl M.step start | |
@[simp] lemma eval_from_nil (s : σ) : M.eval_from s [] = s := rfl | |
@[simp] lemma eval_from_singleton (s : σ) (a : α) : M.eval_from s [a] = M.step s a := rfl | |
@[simp] lemma eval_from_append_singleton (s : σ) (x : list α) (a : α) : | |
M.eval_from s (x ++ [a]) = M.step (M.eval_from s x) a := | |
by simp only [eval_from, list.foldl_append, list.foldl_cons, list.foldl_nil] | |
/-- `M.eval x` evaluates `M` with input `x` starting from the state `M.start`. -/ | |
def eval : list α → σ := M.eval_from M.start | |
@[simp] lemma eval_nil : M.eval [] = M.start := rfl | |
@[simp] lemma eval_singleton (a : α) : M.eval [a] = M.step M.start a := rfl | |
@[simp] lemma eval_append_singleton (x : list α) (a : α) : | |
M.eval (x ++ [a]) = M.step (M.eval x) a := | |
eval_from_append_singleton _ _ _ _ | |
lemma eval_from_of_append (start : σ) (x y : list α) : | |
M.eval_from start (x ++ y) = M.eval_from (M.eval_from start x) y := | |
x.foldl_append _ _ y | |
/-- `M.accepts` is the language of `x` such that `M.eval x` is an accept state. -/ | |
def accepts : language α := | |
λ x, M.eval x ∈ M.accept | |
lemma mem_accepts (x : list α) : x ∈ M.accepts ↔ M.eval_from M.start x ∈ M.accept := by refl | |
lemma eval_from_split [fintype σ] {x : list α} {s t : σ} (hlen : fintype.card σ ≤ x.length) | |
(hx : M.eval_from s x = t) : | |
∃ q a b c, | |
x = a ++ b ++ c ∧ | |
a.length + b.length ≤ fintype.card σ ∧ | |
b ≠ [] ∧ | |
M.eval_from s a = q ∧ | |
M.eval_from q b = q ∧ | |
M.eval_from q c = t := | |
begin | |
obtain ⟨n, m, hneq, heq⟩ := fintype.exists_ne_map_eq_of_card_lt | |
(λ n : fin (fintype.card σ + 1), M.eval_from s (x.take n)) (by norm_num), | |
wlog hle : (n : ℕ) ≤ m using n m, | |
have hlt : (n : ℕ) < m := (ne.le_iff_lt hneq).mp hle, | |
have hm : (m : ℕ) ≤ fintype.card σ := fin.is_le m, | |
dsimp at heq, | |
refine ⟨M.eval_from s ((x.take m).take n), (x.take m).take n, (x.take m).drop n, x.drop m, | |
_, _, _, by refl, _⟩, | |
{ rw [list.take_append_drop, list.take_append_drop] }, | |
{ simp only [list.length_drop, list.length_take], | |
rw [min_eq_left (hm.trans hlen), min_eq_left hle, add_tsub_cancel_of_le hle], | |
exact hm }, | |
{ intro h, | |
have hlen' := congr_arg list.length h, | |
simp only [list.length_drop, list.length, list.length_take] at hlen', | |
rw [min_eq_left, tsub_eq_zero_iff_le] at hlen', | |
{ apply hneq, | |
apply le_antisymm, | |
assumption' }, | |
exact hm.trans hlen, }, | |
have hq : | |
M.eval_from (M.eval_from s ((x.take m).take n)) ((x.take m).drop n) = | |
M.eval_from s ((x.take m).take n), | |
{ rw [list.take_take, min_eq_left hle, ←eval_from_of_append, heq, ←min_eq_left hle, | |
←list.take_take, min_eq_left hle, list.take_append_drop] }, | |
use hq, | |
rwa [←hq, ←eval_from_of_append, ←eval_from_of_append, ←list.append_assoc, list.take_append_drop, | |
list.take_append_drop] | |
end | |
lemma eval_from_of_pow {x y : list α} {s : σ} (hx : M.eval_from s x = s) | |
(hy : y ∈ @language.star α {x}) : M.eval_from s y = s := | |
begin | |
rw language.mem_star at hy, | |
rcases hy with ⟨ S, rfl, hS ⟩, | |
induction S with a S ih, | |
{ refl }, | |
{ have ha := hS a (list.mem_cons_self _ _), | |
rw set.mem_singleton_iff at ha, | |
rw [list.join, eval_from_of_append, ha, hx], | |
apply ih, | |
intros z hz, | |
exact hS z (list.mem_cons_of_mem a hz) } | |
end | |
lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts) | |
(hlen : fintype.card σ ≤ list.length x) : | |
∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card σ ∧ b ≠ [] ∧ | |
{a} * language.star {b} * {c} ≤ M.accepts := | |
begin | |
obtain ⟨_, a, b, c, hx, hlen, hnil, rfl, hb, hc⟩ := M.eval_from_split hlen rfl, | |
use [a, b, c, hx, hlen, hnil], | |
intros y hy, | |
rw language.mem_mul at hy, | |
rcases hy with ⟨ ab, c', hab, hc', rfl ⟩, | |
rw language.mem_mul at hab, | |
rcases hab with ⟨ a', b', ha', hb', rfl ⟩, | |
rw set.mem_singleton_iff at ha' hc', | |
substs ha' hc', | |
have h := M.eval_from_of_pow hb hb', | |
rwa [mem_accepts, eval_from_of_append, eval_from_of_append, h, hc] | |
end | |
end DFA | |