Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.27 kB
/-
Copyright (c) 2020 Fox Thomson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fox Thomson
-/
import data.fintype.basic
import computability.language
import tactic.norm_num
/-!
# Deterministic Finite Automata
This file contains the definition of a Deterministic Finite Automaton (DFA), a state machine which
determines whether a string (implemented as a list over an arbitrary alphabet) is in a regular set
in linear time.
Note that this definition allows for Automaton with infinite states, a `fintype` instance must be
supplied for true DFA's.
-/
universes u v
/-- A DFA is a set of states (`σ`), a transition function from state to state labelled by the
alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`). -/
structure DFA (α : Type u) (σ : Type v) :=
(step : σ → α → σ)
(start : σ)
(accept : set σ)
namespace DFA
variables {α : Type u} {σ : Type v} (M : DFA α σ)
instance [inhabited σ] : inhabited (DFA α σ) :=
⟨DFA.mk (λ _ _, default) default ∅⟩
/-- `M.eval_from s x` evaluates `M` with input `x` starting from the state `s`. -/
def eval_from (start : σ) : list α → σ :=
list.foldl M.step start
@[simp] lemma eval_from_nil (s : σ) : M.eval_from s [] = s := rfl
@[simp] lemma eval_from_singleton (s : σ) (a : α) : M.eval_from s [a] = M.step s a := rfl
@[simp] lemma eval_from_append_singleton (s : σ) (x : list α) (a : α) :
M.eval_from s (x ++ [a]) = M.step (M.eval_from s x) a :=
by simp only [eval_from, list.foldl_append, list.foldl_cons, list.foldl_nil]
/-- `M.eval x` evaluates `M` with input `x` starting from the state `M.start`. -/
def eval : list α → σ := M.eval_from M.start
@[simp] lemma eval_nil : M.eval [] = M.start := rfl
@[simp] lemma eval_singleton (a : α) : M.eval [a] = M.step M.start a := rfl
@[simp] lemma eval_append_singleton (x : list α) (a : α) :
M.eval (x ++ [a]) = M.step (M.eval x) a :=
eval_from_append_singleton _ _ _ _
lemma eval_from_of_append (start : σ) (x y : list α) :
M.eval_from start (x ++ y) = M.eval_from (M.eval_from start x) y :=
x.foldl_append _ _ y
/-- `M.accepts` is the language of `x` such that `M.eval x` is an accept state. -/
def accepts : language α :=
λ x, M.eval x ∈ M.accept
lemma mem_accepts (x : list α) : x ∈ M.accepts ↔ M.eval_from M.start x ∈ M.accept := by refl
lemma eval_from_split [fintype σ] {x : list α} {s t : σ} (hlen : fintype.card σ ≤ x.length)
(hx : M.eval_from s x = t) :
q a b c,
x = a ++ b ++ c ∧
a.length + b.length ≤ fintype.card σ ∧
b ≠ [] ∧
M.eval_from s a = q ∧
M.eval_from q b = q ∧
M.eval_from q c = t :=
begin
obtain ⟨n, m, hneq, heq⟩ := fintype.exists_ne_map_eq_of_card_lt
(λ n : fin (fintype.card σ + 1), M.eval_from s (x.take n)) (by norm_num),
wlog hle : (n : ℕ) ≤ m using n m,
have hlt : (n : ℕ) < m := (ne.le_iff_lt hneq).mp hle,
have hm : (m : ℕ) ≤ fintype.card σ := fin.is_le m,
dsimp at heq,
refine ⟨M.eval_from s ((x.take m).take n), (x.take m).take n, (x.take m).drop n, x.drop m,
_, _, _, by refl, _⟩,
{ rw [list.take_append_drop, list.take_append_drop] },
{ simp only [list.length_drop, list.length_take],
rw [min_eq_left (hm.trans hlen), min_eq_left hle, add_tsub_cancel_of_le hle],
exact hm },
{ intro h,
have hlen' := congr_arg list.length h,
simp only [list.length_drop, list.length, list.length_take] at hlen',
rw [min_eq_left, tsub_eq_zero_iff_le] at hlen',
{ apply hneq,
apply le_antisymm,
assumption' },
exact hm.trans hlen, },
have hq :
M.eval_from (M.eval_from s ((x.take m).take n)) ((x.take m).drop n) =
M.eval_from s ((x.take m).take n),
{ rw [list.take_take, min_eq_left hle, ←eval_from_of_append, heq, ←min_eq_left hle,
←list.take_take, min_eq_left hle, list.take_append_drop] },
use hq,
rwa [←hq, ←eval_from_of_append, ←eval_from_of_append, ←list.append_assoc, list.take_append_drop,
list.take_append_drop]
end
lemma eval_from_of_pow {x y : list α} {s : σ} (hx : M.eval_from s x = s)
(hy : y ∈ @language.star α {x}) : M.eval_from s y = s :=
begin
rw language.mem_star at hy,
rcases hy with ⟨ S, rfl, hS ⟩,
induction S with a S ih,
{ refl },
{ have ha := hS a (list.mem_cons_self _ _),
rw set.mem_singleton_iff at ha,
rw [list.join, eval_from_of_append, ha, hx],
apply ih,
intros z hz,
exact hS z (list.mem_cons_of_mem a hz) }
end
lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts)
(hlen : fintype.card σ ≤ list.length x) :
a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card σ ∧ b ≠ [] ∧
{a} * language.star {b} * {c} ≤ M.accepts :=
begin
obtain ⟨_, a, b, c, hx, hlen, hnil, rfl, hb, hc⟩ := M.eval_from_split hlen rfl,
use [a, b, c, hx, hlen, hnil],
intros y hy,
rw language.mem_mul at hy,
rcases hy with ⟨ ab, c', hab, hc', rfl ⟩,
rw language.mem_mul at hab,
rcases hab with ⟨ a', b', ha', hb', rfl ⟩,
rw set.mem_singleton_iff at ha' hc',
substs ha' hc',
have h := M.eval_from_of_pow hb hb',
rwa [mem_accepts, eval_from_of_append, eval_from_of_append, h, hc]
end
end DFA