Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Rob Arthan's "Descartes's Rule of Signs by an Easy Induction". *) | |
(* ========================================================================= *) | |
needs "Multivariate/realanalysis.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* A couple of handy lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let OPPOSITE_SIGNS = prove | |
(`!a b:real. a * b < &0 <=> &0 < a /\ b < &0 \/ a < &0 /\ &0 < b`, | |
REWRITE_TAC[REAL_ARITH `a * b < &0 <=> &0 < a * --b`; REAL_MUL_POS_LT] THEN | |
REAL_ARITH_TAC);; | |
let VARIATION_SET_FINITE = prove | |
(`FINITE s ==> FINITE {p,q | p IN s /\ q IN s /\ P p q}`, | |
REWRITE_TAC[SET_RULE | |
`{p,q | p IN s /\ q IN t /\ R p q} = | |
{p,q | p IN s /\ q IN {q | q IN t /\ R p q}}`] THEN | |
SIMP_TAC[FINITE_PRODUCT_DEPENDENT; FINITE_RESTRICT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Variation in a sequence of coefficients. *) | |
(* ------------------------------------------------------------------------- *) | |
let variation = new_definition | |
`variation s (a:num->real) = | |
CARD {(p,q) | p IN s /\ q IN s /\ p < q /\ | |
a(p) * a(q) < &0 /\ | |
!i. i IN s /\ p < i /\ i < q ==> a(i) = &0 }`;; | |
let VARIATION_EQ = prove | |
(`!a b s. (!i. i IN s ==> a i = b i) ==> variation s a = variation s b`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[variation] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
ASM_MESON_TAC[]);; | |
let VARIATION_SUBSET = prove | |
(`!a s t. t SUBSET s /\ (!i. i IN (s DIFF t) ==> a i = &0) | |
==> variation s a = variation t a`, | |
REWRITE_TAC[IN_DIFF; SUBSET] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[variation] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
ASM_MESON_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LT_REFL]);; | |
let VARIATION_SPLIT = prove | |
(`!a s n. | |
FINITE s /\ n IN s /\ ~(a n = &0) | |
==> variation s a = variation {i | i IN s /\ i <= n} a + | |
variation {i | i IN s /\ n <= i} a`, | |
REWRITE_TAC[variation] THEN REPEAT STRIP_TAC THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN | |
ASM_SIMP_TAC[VARIATION_SET_FINITE; FINITE_RESTRICT] THEN | |
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_INTER; NOT_IN_EMPTY; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN ARITH_TAC; | |
REWRITE_TAC[IN_UNION; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[STRIP_TAC; | |
STRIP_TAC THEN FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPEC `n:num` th) THEN ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN | |
SIMP_TAC[TAUT `~(a /\ b) <=> ~b \/ ~a`] THEN MATCH_MP_TAC MONO_OR] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
TRY(FIRST_ASSUM MATCH_MP_TAC) THEN | |
FIRST_ASSUM(fun th -> MP_TAC(SPEC `n:num` th) THEN ASM_REWRITE_TAC[]) THEN | |
ASM_ARITH_TAC]);; | |
let VARIATION_SPLIT_NUMSEG = prove | |
(`!a m n p. n IN m..p /\ ~(a n = &0) | |
==> variation(m..p) a = variation(m..n) a + variation(n..p) a`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP | |
(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> b /\ c ==> a ==> d`] | |
VARIATION_SPLIT)) THEN | |
REWRITE_TAC[FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN | |
BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THEN ASM_ARITH_TAC);; | |
let VARIATION_1 = prove | |
(`!a n. variation {n} a = 0`, | |
REWRITE_TAC[variation; IN_SING] THEN | |
REWRITE_TAC[ARITH_RULE `p:num = n /\ q = n /\ p < q /\ X <=> F`] THEN | |
MATCH_MP_TAC(MESON[CARD_CLAUSES] `s = {} ==> CARD s = 0`) THEN | |
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; NOT_IN_EMPTY]);; | |
let VARIATION_2 = prove | |
(`!a m n. variation {m,n} a = if a(m) * a(n) < &0 then 1 else 0`, | |
GEN_TAC THEN MATCH_MP_TAC WLOG_LT THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[INSERT_AC; VARIATION_1; GSYM REAL_NOT_LE; REAL_LE_SQUARE]; | |
REWRITE_TAC[INSERT_AC; REAL_MUL_SYM]; | |
REPEAT STRIP_TAC THEN REWRITE_TAC[variation; IN_INSERT; NOT_IN_EMPTY] THEN | |
ONCE_REWRITE_TAC[TAUT | |
`a /\ b /\ c /\ d /\ e <=> (a /\ b /\ c) /\ d /\ e`] THEN | |
ASM_SIMP_TAC[ARITH_RULE | |
`m:num < n | |
==> ((p = m \/ p = n) /\ (q = m \/ q = n) /\ p < q <=> | |
p = m /\ q = n)`] THEN | |
REWRITE_TAC[MESON[] `(p = m /\ q = n) /\ X p q <=> | |
(p = m /\ q = n) /\ X m n`] THEN | |
REWRITE_TAC[ARITH_RULE `(i:num = m \/ i = n) /\ m < i /\ i < n <=> F`] THEN | |
ASM_CASES_TAC `a m * a(n:num) < &0` THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[SET_RULE `{p,q | p = a /\ q = b} = {(a,b)}`] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ARITH]; | |
MATCH_MP_TAC(MESON[CARD_CLAUSES] `s = {} ==> CARD s = 0`) THEN | |
SIMP_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; NOT_IN_EMPTY]]]);; | |
let VARIATION_3 = prove | |
(`!a m n p. | |
m < n /\ n < p | |
==> variation {m,n,p} a = if a(n) = &0 then variation{m,p} a | |
else variation {m,n} a + variation{n,p} a`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL | |
[MATCH_MP_TAC VARIATION_SUBSET THEN ASM SET_TAC[]; | |
MP_TAC(ISPECL [`a:num->real`; `{m:num,n,p}`; `n:num`] VARIATION_SPLIT) THEN | |
ASM_SIMP_TAC[FINITE_INSERT; FINITE_EMPTY; IN_INSERT; NOT_IN_EMPTY] THEN | |
DISCH_THEN SUBST1_TAC THEN BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_ARITH_TAC]);; | |
let VARIATION_OFFSET = prove | |
(`!p m n a. variation(m+p..n+p) a = variation(m..n) (\i. a(i + p))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[variation] THEN | |
MATCH_MP_TAC BIJECTIONS_CARD_EQ THEN MAP_EVERY EXISTS_TAC | |
[`\(i:num,j). i - p,j - p`; `\(i:num,j). i + p,j + p`] THEN | |
REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN | |
SIMP_TAC[VARIATION_SET_FINITE; FINITE_NUMSEG] THEN | |
REWRITE_TAC[IN_NUMSEG; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN TRY ASM_ARITH_TAC THENL | |
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`y < &0 ==> x = y ==> x < &0`)) THEN | |
BINOP_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC; | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; | |
FIRST_X_ASSUM(MP_TAC o SPEC `i - p:num`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; MATCH_MP_TAC EQ_IMP] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The crucial lemma (roughly Lemma 2 in the paper). *) | |
(* ------------------------------------------------------------------------- *) | |
let ARTHAN_LEMMA = prove | |
(`!n a b. | |
~(a n = &0) /\ (b n = &0) /\ (!m. sum(0..m) a = b m) | |
==> ?d. ODD d /\ variation (0..n) a = variation (0..n) b + d`, | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN | |
DISCH_THEN(LABEL_TAC "*") THEN | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[FIRST_X_ASSUM(MP_TAC o SPEC `0`) THEN | |
ASM_REWRITE_TAC[SUM_SING_NUMSEG] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE | |
`~(n = 0) ==> n = 1 \/ 2 <= n`)) | |
THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `1` THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
REWRITE_TAC[VARIATION_2; OPPOSITE_SIGNS] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `0` th) THEN MP_TAC(SPEC `1` th)) THEN | |
SIMP_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `?p. 1 < p /\ p <= n /\ ~(a p = &0)` MP_TAC THENL | |
[ASM_MESON_TAC[ARITH_RULE `2 <= n ==> 1 < n`; LE_REFL]; | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
REWRITE_TAC[TAUT `a ==> ~(b /\ c /\ ~d) <=> a /\ b /\ c ==> d`] THEN | |
STRIP_TAC] THEN | |
REMOVE_THEN "*" (MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL | |
[`(\i. if i + 1 = 1 then a 0 + a 1 else a(i + 1)):num->real`; | |
`(\i. b(i + 1)):num->real`]) THEN | |
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 1) /\ n - 1 + 1 = n`] THEN | |
REWRITE_TAC[GSYM(SPEC `1` VARIATION_OFFSET)] THEN ANTS_TAC THENL | |
[X_GEN_TAC `m:num` THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `sum(0..m+1) a` THEN CONJ_TAC THENL | |
[SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH_RULE `0 + 1 <= n + 1`] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[REAL_ADD_ASSOC] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `2 = 1 + 1`; SUM_OFFSET] THEN | |
MATCH_MP_TAC SUM_EQ_NUMSEG THEN ARITH_TAC; | |
ASM_REWRITE_TAC[]]; | |
ABBREV_TAC `a':num->real = \m. if m = 1 then a 0 + a 1 else a m` THEN | |
ASM_SIMP_TAC[ARITH_RULE | |
`2 <= n ==> n - 1 + 1 = n /\ n - 1 - 1 + 1 = n - 1`] THEN | |
CONV_TAC NUM_REDUCE_CONV] THEN | |
SUBGOAL_THEN | |
`variation (1..n) a' = variation {1,p} a' + variation (p..n) a /\ | |
variation (0..n) a = variation {0,1,p} a + variation (p..n) a` | |
(CONJUNCTS_THEN SUBST1_TAC) | |
THENL | |
[CONJ_TAC THEN MATCH_MP_TAC EQ_TRANS THENL | |
[EXISTS_TAC `variation(1..p) a' + variation(p..n) a'`; | |
EXISTS_TAC `variation(0..p) a + variation(p..n) a`] THEN | |
(CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN EXPAND_TAC "a'" THEN | |
REWRITE_TAC[IN_NUMSEG] THEN ASM_ARITH_TAC; | |
BINOP_TAC THENL | |
[MATCH_MP_TAC VARIATION_SUBSET; MATCH_MP_TAC VARIATION_EQ] THEN | |
EXPAND_TAC "a'" THEN REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
REWRITE_TAC[IN_NUMSEG] THEN TRY(GEN_TAC THEN ASM_ARITH_TAC) THEN | |
(CONJ_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[IN_DIFF]]) THEN | |
REWRITE_TAC[IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN | |
REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN | |
TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN ASM_ARITH_TAC]); | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD] THEN | |
DISCH_THEN(ASSUME_TAC o MATCH_MP (INT_ARITH | |
`a + b:int = c + d ==> c = (a + b) - d`)) THEN | |
REWRITE_TAC[INT_ARITH `a + b:int = c + d <=> d = (a + b) - c`] THEN | |
ASM_CASES_TAC `a 0 + a 1 = &0` THENL | |
[SUBGOAL_THEN `!i. 0 < i /\ i < p ==> b i = &0` ASSUME_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(SUBST1_TAC o SYM o SPEC `i:num`) THEN | |
ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; | |
ARITH_RULE `0 < i ==> 0 + 1 <= i`] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
ASM_REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LID] THEN | |
MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(b:num->real) p = a p` ASSUME_TAC THENL | |
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN | |
SIMP_TAC[SUM_CLAUSES_RIGHT; ASSUME `1 < p`; | |
ARITH_RULE `1 < p ==> 0 < p /\ 0 <= p`] THEN | |
ASM_REWRITE_TAC[REAL_EQ_ADD_RCANCEL_0] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `variation(0..n) b = variation {0,p} b + variation(1..n) b` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `variation(0..p) b + variation(p..n) b` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN REWRITE_TAC[IN_NUMSEG] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `p:num`) THEN | |
SIMP_TAC[SUM_CLAUSES_RIGHT; ASSUME `1 < p`; | |
ARITH_RULE `1 < p ==> 0 < p /\ 0 <= p`] THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`~(ap = &0) ==> s = &0 ==> ~(s + ap = &0)`)) THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; | |
BINOP_TAC THENL [ALL_TAC; CONV_TAC SYM_CONV] THEN | |
MATCH_MP_TAC VARIATION_SUBSET THEN | |
REWRITE_TAC[SUBSET; IN_DIFF; IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN | |
(CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC]) THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC]; | |
ALL_TAC]; | |
SUBGOAL_THEN `variation(0..n) b = variation {0,1} b + variation(1..n) b` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `variation(0..1) b + variation(1..n) b` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN REWRITE_TAC[IN_NUMSEG] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `1`) THEN | |
SIMP_TAC[SUM_CLAUSES_NUMSEG; num_CONV `1`] THEN | |
CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[]; | |
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SUBSET THEN | |
REWRITE_TAC[SUBSET; IN_DIFF; IN_NUMSEG; IN_INSERT; NOT_IN_EMPTY] THEN | |
ARITH_TAC]; | |
SUBGOAL_THEN `(b:num->real) 1 = a 0 + a 1` ASSUME_TAC THENL | |
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN | |
SIMP_TAC[num_CONV `1`; SUM_CLAUSES_NUMSEG] THEN | |
CONV_TAC NUM_REDUCE_CONV; | |
ALL_TAC]]] THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `0`)) THEN CONV_TAC NUM_REDUCE_CONV THEN | |
REWRITE_TAC[SUM_SING_NUMSEG] THEN DISCH_TAC THEN | |
ASM_REWRITE_TAC[GSYM INT_OF_NUM_ADD] THEN | |
ASM_SIMP_TAC[VARIATION_3; ARITH; OPPOSITE_SIGNS] THEN COND_CASES_TAC THEN | |
REWRITE_TAC[VARIATION_2; OPPOSITE_SIGNS; REAL_LT_REFL] THEN | |
EXPAND_TAC "a'" THEN CONV_TAC NUM_REDUCE_CONV THEN | |
ASM_SIMP_TAC[ARITH_RULE `1 < p ==> ~(p = 1)`; REAL_LT_REFL] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
CONV_TAC NUM_REDUCE_CONV THEN | |
CONV_TAC(BINDER_CONV(RAND_CONV(RAND_CONV INT_POLY_CONV))) THEN | |
REWRITE_TAC[INT_ARITH `x:int = y + --z <=> x + z = y`] THEN | |
REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN ASM_REWRITE_TAC[UNWIND_THM2] THEN | |
ASM_REWRITE_TAC[ODD_ADD; ARITH_ODD; ARITH_EVEN] THEN ASM_REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Relate even-ness or oddity of variation to signs of end coefficients. *) | |
(* ------------------------------------------------------------------------- *) | |
let VARIATION_OPPOSITE_ENDS = prove | |
(`!a m n. | |
m <= n /\ ~(a m = &0) /\ ~(a n = &0) | |
==> (ODD(variation(m..n) a) <=> a m * a n < &0)`, | |
REPEAT GEN_TAC THEN WF_INDUCT_TAC `n - m:num` THEN REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `!i:num. m < i /\ i < n ==> a i = &0` THENL | |
[MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `ODD(variation {m,n} a)` THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SUBSET THEN | |
ASM_REWRITE_TAC[INSERT_SUBSET; IN_NUMSEG; IN_DIFF; EMPTY_SUBSET] THEN | |
REWRITE_TAC[LE_REFL; IN_INSERT; NOT_IN_EMPTY] THEN | |
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; | |
REWRITE_TAC[VARIATION_2] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[ARITH]]; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN | |
REWRITE_TAC[NOT_IMP] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPECL [`n:num`; `p:num`] th) THEN | |
MP_TAC(SPECL [`p:num`; `m:num`] th)) THEN | |
ASM_SIMP_TAC[LT_IMP_LE] THEN | |
REPEAT(ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_TAC]) THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `ODD(variation(m..p) a + variation(p..n) a)` THEN CONJ_TAC THENL | |
[AP_TERM_TAC THEN MATCH_MP_TAC VARIATION_SPLIT_NUMSEG THEN | |
ASM_SIMP_TAC[LT_IMP_LE; IN_NUMSEG]; | |
ASM_REWRITE_TAC[ODD_ADD; OPPOSITE_SIGNS] THEN ASM_REAL_ARITH_TAC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Polynomial with odd variation has at least one positive root. *) | |
(* This is the only "analytical" part of the proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_POLYFUN_SGN_AT_INFINITY = prove | |
(`!a n. ~(a n = &0) | |
==> ?B. &0 < B /\ | |
!x. B <= abs x | |
==> real_sgn(sum(0..n) (\i. a i * x pow i)) = | |
real_sgn(a n * x pow n)`, | |
let lemma = prove | |
(`abs(x) < abs(y) ==> real_sgn(x + y) = real_sgn y`, | |
REWRITE_TAC[real_sgn] THEN REAL_ARITH_TAC) in | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01; SUM_SING_NUMSEG]; | |
ALL_TAC] THEN | |
ABBREV_TAC `B = sum (0..n-1) (\i. abs(a i)) / abs(a n)` THEN | |
SUBGOAL_THEN `&0 <= B` ASSUME_TAC THENL | |
[EXPAND_TAC "B" THEN SIMP_TAC[REAL_LE_DIV; REAL_ABS_POS; SUM_POS_LE_NUMSEG]; | |
ALL_TAC] THEN | |
EXISTS_TAC `&1 + B` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
X_GEN_TAC `x:real` THEN STRIP_TAC THEN | |
ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; LE_1] THEN MATCH_MP_TAC lemma THEN | |
MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `sum(0..n-1) (\i. abs(a i)) * abs x pow (n - 1)` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC SUM_ABS_LE THEN | |
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN | |
X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[REAL_ABS_MUL] THEN | |
MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS; REAL_ABS_POW] THEN | |
MATCH_MP_TAC REAL_POW_MONO THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; | |
SUBGOAL_THEN `(x:real) pow n = x * x pow (n - 1)` SUBST1_TAC THENL | |
[SIMP_TAC[GSYM(CONJUNCT2 real_pow)] THEN AP_TERM_TAC THEN ASM_ARITH_TAC; | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_MUL_ASSOC] THEN | |
MATCH_MP_TAC REAL_LT_RMUL THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; GSYM REAL_ABS_NZ] THEN | |
ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_POW_LT THEN ASM_REAL_ARITH_TAC]]]);; | |
let REAL_POLYFUN_HAS_POSITIVE_ROOT = prove | |
(`!a n. a 0 < &0 /\ &0 < a n | |
==> ?x. &0 < x /\ sum(0..n) (\i. a i * x pow i) = &0`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?x. &0 < x /\ &0 <= sum(0..n) (\i. a i * x pow i)` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(ISPECL [`a:num->real`; `n:num`] REAL_POLYFUN_SGN_AT_INFINITY) THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `x:real` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:real`)) THEN | |
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `real_sgn(a n * x pow n) = &1` SUBST1_TAC THEN | |
ASM_SIMP_TAC[REAL_SGN_EQ; REAL_LT_MUL; REAL_POW_LT; real_gt] THEN | |
REWRITE_TAC[REAL_LT_IMP_LE]; | |
MP_TAC(ISPECL [`\x. sum(0..n) (\i. a i * x pow i)`; | |
`&0`; `x:real`; `&0`] REAL_IVT_INCREASING) THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE; IN_REAL_INTERVAL; | |
REAL_POW_ZERO; COND_RAND] THEN | |
REWRITE_TAC[REAL_MUL_RID; REAL_MUL_RZERO; SUM_DELTA; IN_NUMSEG; LE_0] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC REAL_CONTINUOUS_ON_SUM THEN | |
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_CONTINUOUS_ON_LMUL THEN | |
MATCH_MP_TAC REAL_CONTINUOUS_ON_POW THEN | |
REWRITE_TAC[REAL_CONTINUOUS_ON_ID]; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real` THEN | |
SIMP_TAC[REAL_LT_LE] THEN ASM_CASES_TAC `y:real = &0` THEN | |
ASM_SIMP_TAC[REAL_POW_ZERO; COND_RAND; REAL_MUL_RZERO; REAL_MUL_RID] THEN | |
REWRITE_TAC[SUM_DELTA; IN_NUMSEG; LE_0] THEN ASM_REAL_ARITH_TAC]]);; | |
let ODD_VARIATION_POSITIVE_ROOT = prove | |
(`!a n. ODD(variation(0..n) a) | |
==> ?x. &0 < x /\ sum(0..n) (\i. a i * x pow i) = &0`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?M. !i. i IN 0..n /\ ~(a i = &0) ==> i <= M` MP_TAC THENL | |
[EXISTS_TAC `n:num` THEN SIMP_TAC[IN_NUMSEG]; ALL_TAC] THEN | |
SUBGOAL_THEN `?i. i IN 0..n /\ ~(a i = &0)` MP_TAC THENL | |
[MATCH_MP_TAC(MESON[] `((!i. P i ==> Q i) ==> F) ==> ?i. P i /\ ~Q i`) THEN | |
DISCH_TAC THEN SUBGOAL_THEN `variation (0..n) a = variation {0} a` | |
(fun th -> SUBST_ALL_TAC th THEN ASM_MESON_TAC[VARIATION_1; ODD]) THEN | |
MATCH_MP_TAC VARIATION_SUBSET THEN | |
ASM_SIMP_TAC[IN_DIFF] THEN REWRITE_TAC[IN_NUMSEG; SING_SUBSET; LE_0]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> a ==> a /\ b ==> c`] THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN REWRITE_TAC[num_MAX] THEN | |
REWRITE_TAC[TAUT `p ==> ~(q /\ r) <=> p /\ q ==> ~r`; IN_NUMSEG] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN | |
ONCE_REWRITE_TAC[TAUT `p /\ ~q ==> r <=> p /\ ~r ==> q`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `q:num` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `p:num <= q` ASSUME_TAC THENL | |
[ASM_MESON_TAC[NOT_LT]; ALL_TAC] THEN | |
SUBGOAL_THEN `(a:num->real) p * a q < &0` ASSUME_TAC THENL | |
[ASM_SIMP_TAC[GSYM VARIATION_OPPOSITE_ENDS] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] | |
`ODD p ==> p = q ==> ODD q`)) THEN | |
MATCH_MP_TAC VARIATION_SUBSET THEN | |
REWRITE_TAC[SUBSET_NUMSEG; IN_NUMSEG; IN_DIFF; DE_MORGAN_THM] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC] THEN | |
FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_ARITH_TAC); | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`\i. (a:num->real)(p + i) / a q`; `q - p:num`] | |
REAL_POLYFUN_HAS_POSITIVE_ROOT) THEN | |
ASM_SIMP_TAC[ADD_CLAUSES; ARITH_RULE `p:num <= q ==> p + q - p = q`] THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[real_div; OPPOSITE_SIGNS; REAL_MUL_POS_LT] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPPOSITE_SIGNS]) THEN | |
REWRITE_TAC[REAL_ARITH `x < &0 <=> &0 < --x`; GSYM REAL_INV_NEG] THEN | |
REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN | |
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_RING | |
`!a. y = a * x ==> x = &0 ==> y = &0`) THEN | |
EXISTS_TAC `(a:num->real) q * x pow p` THEN | |
REWRITE_TAC[GSYM SUM_LMUL; REAL_ARITH | |
`(aq * xp) * api / aq * xi:real = (aq / aq) * api * (xp * xi)`] THEN | |
ASM_CASES_TAC `(a:num->real) q = &0` THENL | |
[ASM_MESON_TAC[REAL_MUL_LZERO; REAL_LT_REFL]; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM REAL_POW_ADD; REAL_DIV_REFL; REAL_MUL_LID] THEN | |
ONCE_REWRITE_TAC[ADD_SYM] THEN MP_TAC(SPEC `p:num` SUM_OFFSET) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN | |
MATCH_MP_TAC SUM_SUPERSET THEN | |
REWRITE_TAC[SUBSET_NUMSEG; IN_NUMSEG; IN_DIFF; DE_MORGAN_THM] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; REPEAT STRIP_TAC] THEN | |
REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN | |
FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_ARITH_TAC));; | |
(* ------------------------------------------------------------------------- *) | |
(* Define root multiplicities. *) | |
(* ------------------------------------------------------------------------- *) | |
let multiplicity = new_definition | |
`multiplicity f r = | |
@k. ?a n. ~(sum(0..n) (\i. a i * r pow i) = &0) /\ | |
!x. f(x) = (x - r) pow k * sum(0..n) (\i. a i * x pow i)`;; | |
let MULTIPLICITY_UNIQUE = prove | |
(`!f a r b m k. | |
(!x. f(x) = (x - r) pow k * sum(0..m) (\j. b j * x pow j)) /\ | |
~(sum(0..m) (\j. b j * r pow j) = &0) | |
==> k = multiplicity f r`, | |
let lemma = prove | |
(`!i j f g. f real_continuous_on (:real) /\ g real_continuous_on (:real) /\ | |
~(f r = &0) /\ ~(g r = &0) | |
==> (!x. (x - r) pow i * f(x) = (x - r) pow j * g(x)) | |
==> j = i`, | |
MATCH_MP_TAC WLOG_LT THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `F ==> p`) THEN | |
MP_TAC(ISPECL [`atreal r`; `f:real->real`; | |
`(f:real->real) r`; `&0`] | |
REALLIM_UNIQUE) THEN | |
ASM_REWRITE_TAC[TRIVIAL_LIMIT_ATREAL] THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM REAL_CONTINUOUS_ATREAL] THEN | |
ASM_MESON_TAC[REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT; REAL_OPEN_UNIV; | |
IN_UNIV]; | |
MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN | |
EXISTS_TAC `\x:real. (x - r) pow (j - i) * g x` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REWRITE_TAC[EVENTUALLY_ATREAL] THEN EXISTS_TAC `&1` THEN | |
REWRITE_TAC[REAL_LT_01; REAL_ARITH `&0 < abs(x - r) <=> ~(x = r)`] THEN | |
X_GEN_TAC `x:real` THEN STRIP_TAC THEN MATCH_MP_TAC(REAL_RING | |
`!a. a * x = a * y /\ ~(a = &0) ==> x = y`) THEN | |
EXISTS_TAC `(x - r:real) pow i` THEN | |
ASM_REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_ADD; REAL_POW_EQ_0] THEN | |
ASM_SIMP_TAC[REAL_SUB_0; ARITH_RULE `i:num < j ==> i + j - i = j`]; | |
SUBST1_TAC(REAL_ARITH `&0 = &0 * (g:real->real) r`) THEN | |
MATCH_MP_TAC REALLIM_MUL THEN CONJ_TAC THENL | |
[REWRITE_TAC[] THEN MATCH_MP_TAC REALLIM_NULL_POW THEN | |
REWRITE_TAC[GSYM REALLIM_NULL; REALLIM_ATREAL_ID] THEN ASM_ARITH_TAC; | |
REWRITE_TAC[GSYM REAL_CONTINUOUS_ATREAL] THEN | |
ASM_MESON_TAC[REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT; | |
REAL_OPEN_UNIV; IN_UNIV]]]]) in | |
REPEAT STRIP_TAC THEN REWRITE_TAC[multiplicity] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC SELECT_UNIQUE THEN | |
X_GEN_TAC `j:num` THEN EQ_TAC THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THENL | |
[REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
MATCH_MP_TAC lemma THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
MATCH_MP_TAC REAL_CONTINUOUS_ON_SUM THEN | |
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_CONTINUOUS_ON_LMUL THEN | |
MATCH_MP_TAC REAL_CONTINUOUS_ON_POW THEN | |
REWRITE_TAC[REAL_CONTINUOUS_ON_ID]; | |
DISCH_THEN SUBST1_TAC THEN | |
MAP_EVERY EXISTS_TAC [`b:num->real`; `m:num`] THEN ASM_REWRITE_TAC[]]);; | |
let MULTIPLICITY_WORKS = prove | |
(`!r n a. | |
(?i. i IN 0..n /\ ~(a i = &0)) | |
==> ?b m. | |
~(sum(0..m) (\i. b i * r pow i) = &0) /\ | |
!x. sum(0..n) (\i. a i * x pow i) = | |
(x - r) pow multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r * | |
sum(0..m) (\i. b i * x pow i)`, | |
REWRITE_TAC[multiplicity] THEN CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN | |
GEN_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN | |
DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN | |
ASM_CASES_TAC `(a:num->real) n = &0` THENL | |
[ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2] | |
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `a:num->real`) THEN | |
ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; LE_1] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `i:num` MP_TAC) THEN | |
REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN | |
EXISTS_TAC `i:num` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `i:num = n` THENL [ASM_MESON_TAC[]; ASM_ARITH_TAC]; | |
ALL_TAC] THEN | |
DISCH_THEN(K ALL_TAC) THEN | |
ASM_CASES_TAC `sum(0..n) (\i. a i * r pow i) = &0` THENL | |
[ASM_CASES_TAC `n = 0` THENL | |
[UNDISCH_TAC `sum (0..n) (\i. a i * r pow i) = &0` THEN | |
ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2; SUM_SING] THEN | |
REWRITE_TAC[real_pow; REAL_MUL_RID] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
MP_TAC(GEN `x:real` (ISPECL [`a:num->real`; `x:real`; `r:real`; `n:num`] | |
REAL_SUB_POLYFUN)) THEN ASM_SIMP_TAC[LE_1; REAL_SUB_RZERO] THEN | |
ABBREV_TAC `b j = sum (j + 1..n) (\i. a i * r pow (i - j - 1))` THEN | |
DISCH_THEN(K ALL_TAC) THEN | |
FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [GSYM FUN_EQ_THM]) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `b:num->real`) THEN ANTS_TAC THENL | |
[EXISTS_TAC `n - 1` THEN REWRITE_TAC[IN_NUMSEG; LE_REFL; LE_0] THEN | |
EXPAND_TAC "b" THEN REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[SUB_ADD; LE_1; SUM_SING_NUMSEG; real_pow; REAL_MUL_RID; | |
ARITH_RULE `n - (n - 1) - 1 = 0`]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` (fun th -> | |
EXISTS_TAC `SUC k` THEN MP_TAC th)) THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC]; | |
MAP_EVERY EXISTS_TAC [`0`; `a:num->real`; `n:num`] THEN | |
ASM_REWRITE_TAC[real_pow; REAL_MUL_LID]]);; | |
let MULTIPLICITY_OTHER_ROOT = prove | |
(`!a n r s. | |
~(r = s) /\ (?i. i IN 0..n /\ ~(a i = &0)) | |
==> multiplicity (\x. (x - r) pow m * sum(0..n) (\i. a i * x pow i)) s = | |
multiplicity (\x. sum(0..n) (\i. a i * x pow i)) s`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_UNIQUE THEN | |
REWRITE_TAC[] THEN | |
MP_TAC(ISPECL [`s:real`; `n:num`; `a:num->real`] | |
MULTIPLICITY_WORKS) THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`c:num->real`; `p:num`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o GSYM)) THEN | |
SUBGOAL_THEN | |
`?b q. !x. sum(0..q) (\j. b j * x pow j) = | |
(x - r) pow m * sum (0..p) (\i. c i * x pow i)` | |
MP_TAC THENL | |
[ALL_TAC; | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC[REAL_RING `r * x = s * r * y <=> r = &0 \/ s * y = x`] THEN | |
ASM_REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0]] THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`c:num->real`; `p:num`; `m:num`] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN INDUCT_TAC THEN REPEAT GEN_TAC THENL | |
[MAP_EVERY EXISTS_TAC [`c:num->real`; `p:num`] THEN | |
ASM_REWRITE_TAC[real_pow; REAL_MUL_LID]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `c:num->real`]) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:num->real`; `n:num`] THEN | |
DISCH_THEN(ASSUME_TAC o GSYM) THEN | |
ASM_REWRITE_TAC[real_pow; GSYM REAL_MUL_ASSOC] THEN | |
EXISTS_TAC `\i. (if 0 < i then a(i - 1) else &0) - | |
(if i <= n then r * a i else &0)` THEN | |
EXISTS_TAC `n + 1` THEN | |
REWRITE_TAC[REAL_SUB_RDISTRIB; SUM_SUB_NUMSEG] THEN X_GEN_TAC `x:real` THEN | |
BINOP_TAC THENL | |
[MP_TAC(ARITH_RULE `0 <= n + 1`) THEN SIMP_TAC[SUM_CLAUSES_LEFT] THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[SUM_OFFSET; LT_REFL] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID; ARITH_RULE `0 < i + 1`] THEN | |
REWRITE_TAC[GSYM SUM_LMUL; ADD_SUB; REAL_POW_ADD; REAL_POW_1]; | |
SIMP_TAC[SUM_CLAUSES_RIGHT; LE_0; ARITH_RULE `0 < n + 1`] THEN | |
REWRITE_TAC[ADD_SUB; ARITH_RULE `~(n + 1 <= n)`] THEN | |
SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID; GSYM SUM_LMUL]] THEN | |
MATCH_MP_TAC SUM_EQ_NUMSEG THEN REWRITE_TAC[REAL_MUL_AC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The main lemmas to be applied iteratively. *) | |
(* ------------------------------------------------------------------------- *) | |
let VARIATION_POSITIVE_ROOT_FACTOR = prove | |
(`!a n r. | |
~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0 | |
==> ?b. ~(b(n - 1) = &0) /\ | |
(!x. sum(0..n) (\i. a i * x pow i) = | |
(x - r) * sum(0..n-1) (\i. b i * x pow i)) /\ | |
?d. ODD d /\ variation(0..n) a = variation(0..n-1) b + d`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; real_pow; REAL_MUL_RID] THEN MESON_TAC[]; | |
STRIP_TAC] THEN | |
ABBREV_TAC `b = \j. sum (j + 1..n) (\i. a i * r pow (i - j - 1))` THEN | |
EXISTS_TAC `b:num->real` THEN REPEAT CONJ_TAC THENL | |
[EXPAND_TAC "b" THEN REWRITE_TAC[] THEN ASM_SIMP_TAC[SUB_ADD; LE_1] THEN | |
ASM_SIMP_TAC[SUM_SING_NUMSEG; ARITH_RULE `n - (n - 1) - 1 = 0`] THEN | |
ASM_REWRITE_TAC[real_pow; REAL_MUL_RID]; | |
MP_TAC(GEN `x:real` (SPECL [`a:num->real`; `x:real`; `r:real`; `n:num`] | |
REAL_SUB_POLYFUN)) THEN | |
ASM_SIMP_TAC[LE_1; REAL_SUB_RZERO] THEN DISCH_THEN(K ALL_TAC) THEN | |
EXPAND_TAC "b" THEN REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(b:num->real) n = &0` ASSUME_TAC THENL | |
[EXPAND_TAC "b" THEN REWRITE_TAC[] THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN | |
ARITH_TAC; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL | |
[`n:num`; `\i. if i <= n then a i * (r:real) pow i else &0`; | |
`\i. if i <= n then --b i * (r:real) pow (i + 1) else &0`] | |
ARTHAN_LEMMA) THEN | |
ASM_SIMP_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_LT_IMP_NZ; REAL_NEG_0; | |
LE_REFL] THEN | |
ANTS_TAC THENL | |
[X_GEN_TAC `j:num` THEN EXPAND_TAC "b" THEN REWRITE_TAC[] THEN | |
ASM_CASES_TAC `j:num <= n` THEN ASM_REWRITE_TAC[] THENL | |
[SUBGOAL_THEN `!i:num. i <= j ==> i <= n` MP_TAC THENL | |
[ASM_ARITH_TAC; SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC)] THEN | |
REWRITE_TAC[REAL_ARITH `a:real = --b * c <=> a + b * c = &0`] THEN | |
REWRITE_TAC[GSYM SUM_RMUL; GSYM REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN | |
SIMP_TAC[ARITH_RULE `j + 1 <= k ==> k - j - 1 + j + 1 = k`] THEN | |
ASM_SIMP_TAC[SUM_COMBINE_R; LE_0]; | |
REWRITE_TAC[GSYM SUM_RESTRICT_SET; IN_NUMSEG] THEN | |
ASM_SIMP_TAC[ARITH_RULE | |
`~(j <= n) ==> ((0 <= i /\ i <= j) /\ i <= n <=> 0 <= i /\ i <= n)`] THEN | |
ASM_REWRITE_TAC[GSYM numseg]]; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num` THEN | |
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(ARITH_RULE | |
`x':num = x /\ y' = y ==> x' = y' + d ==> x = y + d`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `variation(0..n) (\i. a i * r pow i)` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_EQ THEN SIMP_TAC[IN_NUMSEG]; | |
ALL_TAC]; | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `variation(0..n) (\i. --b i * r pow (i + 1))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_EQ THEN SIMP_TAC[IN_NUMSEG]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `variation(0..n-1) (\i. --b i * r pow (i + 1))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC VARIATION_SUBSET THEN | |
REWRITE_TAC[SUBSET_NUMSEG; IN_DIFF; IN_NUMSEG] THEN | |
CONJ_TAC THENL [ARITH_TAC; X_GEN_TAC `i:num` THEN STRIP_TAC] THEN | |
SUBGOAL_THEN `i:num = n` SUBST_ALL_TAC THENL | |
[ASM_ARITH_TAC; ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]; | |
ALL_TAC]] THEN | |
REWRITE_TAC[variation] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`(a * x) * (b * x'):real = (x * x') * a * b`] THEN | |
SIMP_TAC[NOT_IMP; GSYM CONJ_ASSOC; GSYM REAL_POW_ADD; | |
REAL_ARITH `--x * --y:real = x * y`] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `x * y < &0 <=> &0 < x * --y`] THEN | |
ASM_SIMP_TAC[REAL_LT_MUL_EQ; REAL_POW_LT] THEN | |
ASM_SIMP_TAC[REAL_MUL_RNEG; REAL_ENTIRE; REAL_NEG_EQ_0; REAL_POW_EQ_0] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ]]);; | |
let VARIATION_POSITIVE_ROOT_MULTIPLE_FACTOR = prove | |
(`!r n a. | |
~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0 | |
==> ?b k m. 0 < k /\ m < n /\ ~(b m = &0) /\ | |
(!x. sum(0..n) (\i. a i * x pow i) = | |
(x - r) pow k * sum(0..m) (\i. b i * x pow i)) /\ | |
~(sum(0..m) (\j. b j * r pow j) = &0) /\ | |
?d. EVEN d /\ variation(0..n) a = variation(0..m) b + k + d`, | |
GEN_TAC THEN MATCH_MP_TAC num_WF THEN | |
X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `a:num->real` THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; real_pow; REAL_MUL_RID] THEN MESON_TAC[]; | |
STRIP_TAC] THEN | |
MP_TAC(ISPECL [`a:num->real`; `n:num`; `r:real`] | |
VARIATION_POSITIVE_ROOT_FACTOR) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `c:num->real` MP_TAC) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `sum(0..n-1) (\i. c i * r pow i) = &0` THENL | |
[FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `c:num->real`)] THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->real` THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` MP_TAC) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `e:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `SUC k` THEN ASM_REWRITE_TAC[real_pow; REAL_MUL_ASSOC] THEN | |
REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
REWRITE_TAC[ADD1; ADD_ASSOC] THEN EXISTS_TAC `d - 1 + e`; | |
MAP_EVERY EXISTS_TAC [`c:num->real`; `1`; `n - 1`] THEN | |
ASM_REWRITE_TAC[REAL_POW_1] THEN | |
REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN | |
EXISTS_TAC `d - 1`] THEN | |
UNDISCH_TAC `ODD d` THEN GEN_REWRITE_TAC LAND_CONV [ODD_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN | |
ASM_REWRITE_TAC[SUC_SUB1; EVEN_ADD; EVEN_MULT; ARITH] THEN ARITH_TAC);; | |
let VARIATION_POSITIVE_ROOT_MULTIPLICITY_FACTOR = prove | |
(`!r n a. | |
~(a n = &0) /\ &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0 | |
==> ?b m. m < n /\ ~(b m = &0) /\ | |
(!x. sum(0..n) (\i. a i * x pow i) = | |
(x - r) pow | |
(multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r) * | |
sum(0..m) (\i. b i * x pow i)) /\ | |
~(sum(0..m) (\j. b j * r pow j) = &0) /\ | |
?d. EVEN d /\ | |
variation(0..n) a = variation(0..m) b + | |
multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r + d`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP VARIATION_POSITIVE_ROOT_MULTIPLE_FACTOR) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->real` THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` MP_TAC) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `multiplicity (\x. sum(0..n) (\i. a i * x pow i)) r = k` | |
(fun th -> ASM_REWRITE_TAC[th]) THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_UNIQUE THEN | |
MAP_EVERY EXISTS_TAC [`b:num->real`; `m:num`] THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the main theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let DESCARTES_RULE_OF_SIGNS = prove | |
(`!f a n. f = (\x. sum(0..n) (\i. a i * x pow i)) /\ | |
(?i. i IN 0..n /\ ~(a i = &0)) | |
==> ?d. EVEN d /\ | |
variation(0..n) a = | |
nsum {r | &0 < r /\ f(r) = &0} (\r. multiplicity f r) + d`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`a:num->real`; `n:num`] THEN | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
X_GEN_TAC `a:num->real` THEN ASM_CASES_TAC `(a:num->real) n = &0` THENL | |
[ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2] | |
THENL [ASM_MESON_TAC[]; DISCH_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN ANTS_TAC THENL | |
[ASM_ARITH_TAC; DISCH_THEN(MP_TAC o SPEC `a:num->real`)] THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[IN_NUMSEG; ARITH_RULE `i <= n ==> i <= n - 1 \/ i = n`]; | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num` THEN | |
ASM_SIMP_TAC[LE_0; LE_1; SUM_CLAUSES_RIGHT] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN | |
DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN | |
MATCH_MP_TAC VARIATION_SUBSET THEN | |
REWRITE_TAC[SUBSET_NUMSEG; IN_DIFF; IN_NUMSEG] THEN | |
CONJ_TAC THENL [ASM_ARITH_TAC; X_GEN_TAC `i:num` THEN STRIP_TAC] THEN | |
SUBGOAL_THEN `i:num = n` (fun th -> ASM_REWRITE_TAC[th]) THEN | |
ASM_ARITH_TAC]; | |
DISCH_THEN(K ALL_TAC)] THEN | |
ASM_CASES_TAC `{r | &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0} = {}` THENL | |
[ASM_REWRITE_TAC[NSUM_CLAUSES; ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM1] THEN | |
ONCE_REWRITE_TAC[GSYM NOT_ODD] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP ODD_VARIATION_POSITIVE_ROOT) THEN | |
ASM SET_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `r:real` THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`r:real`; `n:num`; `a:num->real`] | |
VARIATION_POSITIVE_ROOT_MULTIPLICITY_FACTOR) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`b:num->real`; `m:num`] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN | |
ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `b:num->real`) THEN ANTS_TAC THENL | |
[EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_REFL; LE_0]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d1:num` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `d2:num` | |
(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN | |
EXISTS_TAC `d1 + d2:num` THEN | |
CONJ_TAC THENL [ASM_REWRITE_TAC[EVEN_ADD]; ALL_TAC] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`x + y = z ==> (x + d1) + (y + d2):num = z + d1 + d2`) THEN | |
SUBGOAL_THEN | |
`{r | &0 < r /\ sum(0..n) (\i. a i * r pow i) = &0} = | |
r INSERT {r | &0 < r /\ sum(0..m) (\i. b i * r pow i) = &0}` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC(SET_RULE `x IN s /\ s DELETE x = t ==> s = x INSERT t`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ONCE_ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_DELETE] THEN | |
X_GEN_TAC `s:real` THEN | |
FIRST_X_ASSUM(K ALL_TAC o SPEC_VAR) THEN | |
ASM_CASES_TAC `s:real = r` THEN ASM_REWRITE_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FINITE {r | &0 < r /\ sum(0..m) (\i. b i * r pow i) = &0}` | |
MP_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{r | sum(0..m) (\i. b i * r pow i) = &0}` THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; REAL_POLYFUN_FINITE_ROOTS] THEN | |
EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0; LE_REFL]; | |
SIMP_TAC[NSUM_CLAUSES; IN_ELIM_THM] THEN DISCH_TAC] THEN | |
FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [GSYM FUN_EQ_THM]) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(ARITH_RULE `s1:num = s2 ==> s1 + m = m + s2`) THEN | |
MATCH_MP_TAC NSUM_EQ THEN | |
X_GEN_TAC `s:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [t]) THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC MULTIPLICITY_OTHER_ROOT THEN | |
REWRITE_TAC[MESON[] `(?i. P i /\ Q i) <=> ~(!i. P i ==> ~Q i)`] THEN | |
REPEAT STRIP_TAC THEN | |
UNDISCH_TAC `~(sum (0..m) (\j. b j * r pow j) = &0)` THEN ASM_SIMP_TAC[] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; SUM_0]);; | |