Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) | |
From HB Require Import structures. | |
From mathcomp Require Import all_ssreflect. | |
From mathcomp Require Import ssralg ssrnum ssrint interval finmap. | |
Require Import mathcomp_extra boolp classical_sets signed functions cardinality. | |
Require Import reals ereal topology normedtype sequences. | |
(******************************************************************************) | |
(* This file provides definitions and lemmas about numerical functions. *) | |
(* *) | |
(* f ^\+ == the function formed by the non-negative outputs *) | |
(* of f (from a type to the type of extended real *) | |
(* numbers) and 0 otherwise *) | |
(* rendered as f ⁺ with company-coq (U+207A) *) | |
(* f ^\- == the function formed by the non-positive outputs *) | |
(* of f and 0 o.w. *) | |
(* rendered as f ⁻ with company-coq (U+207B) *) | |
(* \1_ A == indicator function 1_A *) | |
(* *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import Order.TTheory GRing.Theory Num.Def Num.Theory. | |
Import numFieldTopology.Exports. | |
Local Open Scope classical_set_scope. | |
Local Open Scope ring_scope. | |
Reserved Notation "f ^\+" (at level 1, format "f ^\+"). | |
Reserved Notation "f ^\-" (at level 1, format "f ^\-"). | |
Section restrict_lemmas. | |
Context {aT : Type} {rT : numFieldType}. | |
Implicit Types (f g : aT -> rT) (D : set aT). | |
Lemma restrict_set0 f : f \_ set0 = cst 0. | |
Proof. by rewrite patch_set0. Qed. | |
Lemma restrict_ge0 D f : | |
(forall x, D x -> 0 <= f x) -> forall x, 0 <= (f \_ D) x. | |
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. | |
Lemma ler_restrict D f g : | |
(forall x, D x -> f x <= g x) -> forall x, (f \_ D) x <= (g \_ D) x. | |
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. | |
End restrict_lemmas. | |
Lemma erestrict_ge0 {aT} {rT : numFieldType} (D : set aT) (f : aT -> \bar rT) : | |
(forall x, D x -> (0 <= f x)%E) -> forall x, (0 <= (f \_ D) x)%E. | |
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. | |
Lemma lee_restrict {aT} {rT : numFieldType} (D : set aT) (f g : aT -> \bar rT) : | |
(forall x, D x -> f x <= g x)%E -> forall x, ((f \_ D) x <= (g \_ D) x)%E. | |
Proof. by move=> f0 x; rewrite /patch; case: ifP => // /set_mem/f0->. Qed. | |
Lemma restrict_lee {aT} {rT : numFieldType} (D E : set aT) (f : aT -> \bar rT) : | |
(forall x, E x -> 0 <= f x)%E -> | |
D `<=` E -> forall x, ((f \_ D) x <= (f \_ E) x)%E. | |
Proof. | |
move=> f0 ED x; rewrite /restrict; case: ifPn => [xD|xD]. | |
by rewrite mem_set//; apply: ED; rewrite in_setE in xD. | |
by case: ifPn => // xE; apply: f0; rewrite in_setE in xE. | |
Qed. | |
Section erestrict_lemmas. | |
Local Open Scope ereal_scope. | |
Variables (T : Type) (R : realDomainType) (D : set T). | |
Implicit Types (f g : T -> \bar R) (r : R). | |
Lemma erestrict_set0 f : f \_ set0 = cst 0. | |
Proof. by rewrite patch_set0. Qed. | |
Lemma erestrict0 : (cst 0 : T -> \bar R) \_ D = cst 0. | |
Proof. by apply/funext => x; rewrite /patch/=; case: ifP. Qed. | |
Lemma erestrictD f g : (f \+ g) \_ D = f \_ D \+ g \_ D. | |
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?adde0. Qed. | |
Lemma erestrictN f : (\- f) \_ D = \- f \_ D. | |
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?oppe0. Qed. | |
Lemma erestrictB f g : (f \- g) \_ D = f \_ D \- g \_ D. | |
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?sube0. Qed. | |
Lemma erestrictM f g : (f \* g) \_ D = f \_ D \* g \_ D. | |
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed. | |
Lemma erestrict_scale k f : | |
(fun x => k%:E * f x) \_ D = (fun x => k%:E * (f \_ D) x). | |
Proof. by apply/funext=> x; rewrite /patch/=; case: ifP; rewrite ?mule0. Qed. | |
End erestrict_lemmas. | |
Section funposneg. | |
Local Open Scope ereal_scope. | |
Definition funepos T (R : realDomainType) (f : T -> \bar R) := | |
fun x => maxe (f x) 0. | |
Definition funeneg T (R : realDomainType) (f : T -> \bar R) := | |
fun x => maxe (- f x) 0. | |
End funposneg. | |
Notation "f ^\+" := (funepos f) : ereal_scope. | |
Notation "f ^\-" := (funeneg f) : ereal_scope. | |
Section funposneg_lemmas. | |
Local Open Scope ereal_scope. | |
Variables (T : Type) (R : realDomainType) (D : set T). | |
Implicit Types (f g : T -> \bar R) (r : R). | |
Lemma funepos_ge0 f x : 0 <= f^\+ x. | |
Proof. by rewrite /funepos /= le_maxr lexx orbT. Qed. | |
Lemma funeneg_ge0 f x : 0 <= f^\- x. | |
Proof. by rewrite /funeneg le_maxr lexx orbT. Qed. | |
Lemma funeposN f : (\- f)^\+ = f^\-. Proof. exact/funext. Qed. | |
Lemma funenegN f : (\- f)^\- = f^\+. | |
Proof. by apply/funext => x; rewrite /funeneg oppeK. Qed. | |
Lemma funepos_restrict f : (f \_ D)^\+ = (f^\+) \_ D. | |
Proof. | |
by apply/funext => x; rewrite /patch/_^\+; case: ifP; rewrite //= maxxx. | |
Qed. | |
Lemma funeneg_restrict f : (f \_ D)^\- = (f^\-) \_ D. | |
Proof. | |
by apply/funext => x; rewrite /patch/_^\-; case: ifP; rewrite //= oppr0 maxxx. | |
Qed. | |
Lemma ge0_funeposE f : (forall x, D x -> 0 <= f x) -> {in D, f^\+ =1 f}. | |
Proof. by move=> f0 x; rewrite inE => Dx; apply/max_idPl/f0. Qed. | |
Lemma ge0_funenegE f : (forall x, D x -> 0 <= f x) -> {in D, f^\- =1 cst 0}. | |
Proof. | |
by move=> f0 x; rewrite inE => Dx; apply/max_idPr; rewrite lee_oppl oppe0 f0. | |
Qed. | |
Lemma le0_funeposE f : (forall x, D x -> f x <= 0) -> {in D, f^\+ =1 cst 0}. | |
Proof. by move=> f0 x; rewrite inE => Dx; exact/max_idPr/f0. Qed. | |
Lemma le0_funenegE f : (forall x, D x -> f x <= 0) -> {in D, f^\- =1 \- f}. | |
Proof. | |
by move=> f0 x; rewrite inE => Dx; apply/max_idPl; rewrite lee_oppr oppe0 f0. | |
Qed. | |
Lemma gt0_funeposM r f : (0 < r)%R -> | |
(fun x => r%:E * f x)^\+ = (fun x => r%:E * (f^\+ x)). | |
Proof. by move=> ?; rewrite funeqE => x; rewrite /funepos maxeMr// mule0. Qed. | |
Lemma gt0_funenegM r f : (0 < r)%R -> | |
(fun x => r%:E * f x)^\- = (fun x => r%:E * (f^\- x)). | |
Proof. | |
by move=> r0; rewrite funeqE => x; rewrite /funeneg -muleN maxeMr// mule0. | |
Qed. | |
Lemma lt0_funeposM r f : (r < 0)%R -> | |
(fun x => r%:E * f x)^\+ = (fun x => - r%:E * (f^\- x)). | |
Proof. | |
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe. | |
by rewrite funeposN gt0_funenegM -1?ltr_oppr ?oppr0. | |
Qed. | |
Lemma lt0_funenegM r f : (r < 0)%R -> | |
(fun x => r%:E * f x)^\- = (fun x => - r%:E * (f^\+ x)). | |
Proof. | |
move=> r0; rewrite -[in LHS](opprK r); under eq_fun do rewrite EFinN mulNe. | |
by rewrite funenegN gt0_funeposM -1?ltr_oppr ?oppr0. | |
Qed. | |
Lemma fune_abse f : abse \o f = f^\+ \+ f^\-. | |
Proof. | |
rewrite funeqE => x /=; have [fx0|/ltW fx0] := leP (f x) 0. | |
- rewrite lee0_abs// /funepos /funeneg. | |
move/max_idPr : (fx0) => ->; rewrite add0e. | |
by move: fx0; rewrite -{1}oppr0 EFinN lee_oppr => /max_idPl ->. | |
- rewrite gee0_abs// /funepos /funeneg; move/max_idPl : (fx0) => ->. | |
by move: fx0; rewrite -{1}oppr0 EFinN lee_oppl => /max_idPr ->; rewrite adde0. | |
Qed. | |
Lemma funeposneg f : f = (fun x => f^\+ x - f^\- x). | |
Proof. | |
rewrite funeqE => x; rewrite /funepos /funeneg; have [|/ltW] := leP (f x) 0. | |
by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e. | |
by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0. | |
Qed. | |
Lemma add_def_funeposneg f x : (f^\+ x +? - f^\- x). | |
Proof. | |
by rewrite /funeneg /funepos; case: (f x) => [r| |]; | |
[rewrite !maxEFin|rewrite /maxe /= ltNye|rewrite /maxe /= ltNye]. | |
Qed. | |
Lemma funeD_Dpos f g : f \+ g = (f \+ g)^\+ \- (f \+ g)^\-. | |
Proof. | |
apply/funext => x; rewrite /funepos /funeneg; have [|/ltW] := leP 0 (f x + g x). | |
- by rewrite -{1}oppe0 -lee_oppl => /max_idPr ->; rewrite sube0. | |
- by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite oppeK add0e. | |
Qed. | |
Lemma funeD_posD f g : f \+ g = (f^\+ \+ g^\+) \- (f^\- \+ g^\-). | |
Proof. | |
apply/funext => x; rewrite /funepos /funeneg. | |
have [|fx0] := leP 0 (f x); last rewrite add0e. | |
- rewrite -{1}oppe0 lee_oppl => /max_idPr ->; have [|/ltW] := leP 0 (g x). | |
by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 sube0. | |
by rewrite -{1}oppe0 -lee_oppr => /max_idPl ->; rewrite adde0 sub0e oppeK. | |
- move/ltW : (fx0); rewrite -{1}oppe0 lee_oppr => /max_idPl ->. | |
have [|] := leP 0 (g x); last rewrite add0e. | |
by rewrite -{1}oppe0 lee_oppl => /max_idPr ->; rewrite adde0 oppeK addeC. | |
move gg' : (g x) => g'; move: g' gg' => [g' gg' g'0|//|goo _]. | |
+ move/ltW : (g'0); rewrite -{1}oppe0 -lee_oppr => /max_idPl => ->. | |
by rewrite oppeD// 2!oppeK. | |
+ by rewrite /maxe /=; case: (f x) fx0. | |
Qed. | |
End funposneg_lemmas. | |
#[global] | |
Hint Extern 0 (is_true (0 <= _ ^\+ _)%E) => solve [apply: funepos_ge0] : core. | |
#[global] | |
Hint Extern 0 (is_true (0 <= _ ^\- _)%E) => solve [apply: funeneg_ge0] : core. | |
Definition indic {T} {R : ringType} (A : set T) (x : T) : R := (x \in A)%:R. | |
Reserved Notation "'\1_' A" (at level 8, A at level 2, format "'\1_' A") . | |
Notation "'\1_' A" := (indic A) : ring_scope. | |
Lemma indicE {T} {R : ringType} (A : set T) (x : T) : | |
indic A x = (x \in A)%:R :> R. | |
Proof. by []. Qed. | |
Lemma indicT {T} {R : ringType} : \1_[set: T] = cst (1 : R). | |
Proof. by apply/funext=> x; rewrite indicE in_setT. Qed. | |
Lemma indic0 {T} {R : ringType} : \1_(@set0 T) = cst (0 : R). | |
Proof. by apply/funext=> x; rewrite indicE in_set0. Qed. | |
Lemma indic_restrict {T : pointedType} {R : numFieldType} (A : set T) : | |
\1_A = 1 \_ A :> (T -> R). | |
Proof. by apply/funext => x; rewrite indicE /patch; case: ifP. Qed. | |
Lemma restrict_indic T (R : numFieldType) (E A : set T) : | |
(\1_E \_ A) = \1_(E `&` A) :> (T -> R). | |
Proof. | |
apply/funext => x; rewrite /restrict 2!indicE. | |
case: ifPn => [|] xA; first by rewrite in_setI xA andbT. | |
by rewrite in_setI (negbTE xA) andbF. | |
Qed. | |
Lemma preimage_indic (T : Type) (R : ringType) (D : set T) (B : set R) : | |
\1_D @^-1` B = if 1 \in B then (if 0 \in B then setT else D) | |
else (if 0 \in B then ~` D else set0). | |
Proof. | |
rewrite /preimage/= /indic; apply/seteqP; split => x; | |
case: ifPn => B1; case: ifPn => B0 //=. | |
- have [|] := boolP (x \in D); first by rewrite inE. | |
by rewrite notin_set in B0. | |
- have [|] := boolP (x \in D); last by rewrite notin_set. | |
by rewrite notin_set in B1. | |
- by have [xD|xD] := boolP (x \in D); | |
[rewrite notin_set in B1|rewrite notin_set in B0]. | |
- by have [xD|xD] := boolP (x \in D); [rewrite inE in B1|rewrite inE in B0]. | |
- have [xD|] := boolP (x \in D); last by rewrite notin_set. | |
by rewrite inE in B1. | |
- have [|xD] := boolP (x \in D); first by rewrite inE. | |
by rewrite inE in B0. | |
Qed. | |
Lemma image_indic T (R : ringType) (D A : set T) : | |
\1_D @` A = (if A `\` D != set0 then [set 0] else set0) `|` | |
(if A `&` D != set0 then [set 1 : R] else set0). | |
Proof. | |
rewrite /indic; apply/predeqP => x; split => [[t At /= <-]|]. | |
by rewrite /indic; case: (boolP (t \in D)); rewrite ?(inE, notin_set) => Dt; | |
[right|left]; rewrite ifT//=; apply/set0P; exists t. | |
by move=> []; case: ifPn; rewrite ?negbK// => /set0P[t [At Dt]] ->; | |
exists t => //; case: (boolP (t \in D)); rewrite ?(inE, notin_set). | |
Qed. | |
Lemma image_indic_sub T (R : ringType) (D A : set T) : | |
\1_D @` A `<=` [set (0 : R); 1]. | |
Proof. | |
by rewrite image_indic; do ![case: ifP=> //= _] => // t []//= ->; [left|right]. | |
Qed. | |