Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
From mathcomp | |
Require Import all_ssreflect ssralg fingroup zmodp poly ssrnum. | |
From mathcomp | |
Require Import matrix mxalgebra vector falgebra ssrnum algC algnum. | |
From mathcomp | |
Require Import fieldext. | |
From mathcomp Require Import vector. | |
(* From mathcomp Require classfun. *) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Local Open Scope ring_scope. | |
Import GRing.Theory Num.Theory. | |
Reserved Notation "'[ u , v ]" | |
(at level 2, format "'[hv' ''[' u , '/ ' v ] ']'"). | |
Reserved Notation "'[ u , v ]_ M" | |
(at level 2, format "'[hv' ''[' u , '/ ' v ]_ M ']'"). | |
Reserved Notation "'[ u ]_ M" (at level 2, format "''[' u ]_ M"). | |
Reserved Notation "'[ u ]" (at level 2, format "''[' u ]"). | |
Reserved Notation "u '``_' i" | |
(at level 3, i at level 2, left associativity, format "u '``_' i"). | |
Reserved Notation "A ^_|_" (at level 8, format "A ^_|_"). | |
Reserved Notation "A _|_ B" (at level 69, format "A _|_ B"). | |
Reserved Notation "eps_theta .-sesqui" (at level 2, format "eps_theta .-sesqui"). | |
Notation "u '``_' i" := (u (GRing.zero (Zp_zmodType O)) i) : ring_scope. | |
Notation "''e_' i" := (delta_mx 0 i) | |
(format "''e_' i", at level 3) : ring_scope. | |
Local Notation "M ^ phi" := (map_mx phi M). | |
Local Notation "M ^t phi" := (map_mx phi (M ^T)) (phi at level 30, at level 30). | |
Structure revop X Y Z (f : Y -> X -> Z) := RevOp { | |
fun_of_revop :> X -> Y -> Z; | |
_ : forall x, f x =1 fun_of_revop^~ x | |
}. | |
Lemma eq_map_mx (R S : ringType) m n (M : 'M[R]_(m,n)) | |
(g f : R -> S) : f =1 g -> M ^ f = M ^ g. | |
Proof. by move=> eq_fg; apply/matrixP=> i j; rewrite !mxE. Qed. | |
Lemma map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) : M ^ id = M. | |
Proof. by apply/matrixP=> i j; rewrite !mxE. Qed. | |
Lemma eq_map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) (f : R -> R) : | |
f =1 id -> M ^ f = M. | |
Proof. by move=> /eq_map_mx->; rewrite map_mx_id. Qed. | |
Module Bilinear. | |
Section ClassDef. | |
Variables (R : ringType) (U U' : lmodType R) (V : zmodType) (s s' : R -> V -> V). | |
Implicit Type phUU'V : phant (U -> U' -> V). | |
Local Coercion GRing.Scale.op : GRing.Scale.law >-> Funclass. | |
Definition axiom (f : U -> U' -> V) (s_law : GRing.Scale.law s) (eqs : s = s_law) | |
(s'_law : GRing.Scale.law s') (eqs' : s' = s'_law) := | |
((forall u', GRing.Linear.axiom (f^~ u') eqs) | |
* (forall u, GRing.Linear.axiom (f u) eqs'))%type. | |
Record class_of (f : U -> U' -> V) : Prop := Class { | |
basel : forall u', GRing.Linear.class_of s (f^~ u'); | |
baser : forall u, GRing.Linear.class_of s' (f u) | |
}. | |
Lemma class_of_axiom f s_law s'_law Ds Ds' : | |
@axiom f s_law Ds s'_law Ds' -> class_of f. | |
Proof. | |
by pose coa := GRing.Linear.class_of_axiom; move=> [/(_ _) /coa ? /(_ _) /coa]. | |
Qed. | |
Structure map phUU'V := Pack {apply; _ : class_of apply}. | |
Local Coercion apply : map >-> Funclass. | |
Definition class (phUU'V : _) (cF : map phUU'V) := | |
let: Pack _ c as cF' := cF return class_of cF' in c. | |
Canonical additiver phU'V phUU'V (u : U) cF := GRing.Additive.Pack phU'V | |
(baser (@class phUU'V cF) u). | |
Canonical linearr phU'V phUU'V (u : U) cF := GRing.Linear.Pack phU'V | |
(baser (@class phUU'V cF) u). | |
(* Fact applyr_key : unit. Proof. exact. Qed. *) | |
Definition applyr_head t (f : U -> U' -> V) u v := let: tt := t in f v u. | |
Notation applyr := (@applyr_head tt). | |
Canonical additivel phUV phUU'V (u' : U') (cF : map _) := | |
@GRing.Additive.Pack _ _ phUV (applyr cF u') (basel (@class phUU'V cF) u'). | |
Canonical linearl phUV phUU'V (u' : U') (cF : map _) := | |
@GRing.Linear.Pack _ _ _ _ phUV (applyr cF u') (basel (@class phUU'V cF) u'). | |
Definition pack (phUV : phant (U -> V)) (phU'V : phant (U' -> V)) | |
(revf : U' -> U -> V) (rf : revop revf) f (g : U -> U' -> V) of (g = fun_of_revop rf) := | |
fun (bFl : U' -> GRing.Linear.map s phUV) flc of (forall u', revf u' = bFl u') & | |
(forall u', phant_id (GRing.Linear.class (bFl u')) (flc u')) => | |
fun (bFr : U -> GRing.Linear.map s' phU'V) frc of (forall u, g u = bFr u) & | |
(forall u, phant_id (GRing.Linear.class (bFr u)) (frc u)) => | |
@Pack (Phant _) f (Class flc frc). | |
(* (* Support for right-to-left rewriting with the generic linearZ rule. *) *) | |
(* Notation mapUV := (map (Phant (U -> U' -> V))). *) | |
(* Definition map_class := mapUV. *) | |
(* Definition map_at (a : R) := mapUV. *) | |
(* Structure map_for a s_a := MapFor {map_for_map : mapUV; _ : s a = s_a}. *) | |
(* Definition unify_map_at a (f : map_at a) := MapFor f (erefl (s a)). *) | |
(* Structure wrapped := Wrap {unwrap : mapUV}. *) | |
(* Definition wrap (f : map_class) := Wrap f. *) | |
End ClassDef. | |
Module Exports. | |
Delimit Scope linear_ring_scope with linR. | |
Notation bilinear_for s s' f := (axiom f (erefl s) (erefl s')). | |
Notation bilinear f := (bilinear_for *:%R *:%R f). | |
Notation biscalar f := (bilinear_for *%R *%R f). | |
Notation bilmorphism_for s s' f := (class_of s s' f). | |
Notation bilmorphism f := (bilmorphism_for *:%R *:%R f). | |
Coercion class_of_axiom : axiom >-> bilmorphism_for. | |
Coercion baser : bilmorphism_for >-> Funclass. | |
Coercion apply : map >-> Funclass. | |
Notation "{ 'bilinear' fUV | s & s' }" := (map s s' (Phant fUV)) | |
(at level 0, format "{ 'bilinear' fUV | s & s' }") : ring_scope. | |
Notation "{ 'bilinear' fUV | s }" := (map s.1 s.2 (Phant fUV)) | |
(at level 0, format "{ 'bilinear' fUV | s }") : ring_scope. | |
Notation "{ 'bilinear' fUV }" := {bilinear fUV | *:%R & *:%R} | |
(at level 0, format "{ 'bilinear' fUV }") : ring_scope. | |
Notation "{ 'biscalar' U }" := {bilinear U -> U -> _ | *%R & *%R} | |
(at level 0, format "{ 'biscalar' U }") : ring_scope. | |
Notation "[ 'bilinear' 'of' f 'as' g ]" := | |
(@pack _ _ _ _ _ _ _ _ _ _ f g erefl _ _ | |
(fun=> erefl) (fun=> idfun) _ _ (fun=> erefl) (fun=> idfun)). | |
Notation "[ 'bilinear' 'of' f ]" := [bilinear of f as f] | |
(at level 0, format "[ 'bilinear' 'of' f ]") : form_scope. | |
Coercion additiver : map >-> GRing.Additive.map. | |
Coercion linearr : map >-> GRing.Linear.map. | |
Canonical additiver. | |
Canonical linearr. | |
Canonical additivel. | |
Canonical linearl. | |
Notation applyr := (@applyr_head _ _ _ _ tt). | |
(* Canonical additive. *) | |
(* (* Support for right-to-left rewriting with the generic linearZ rule. *) *) | |
(* Coercion map_for_map : map_for >-> map. *) | |
(* Coercion unify_map_at : map_at >-> map_for. *) | |
(* Canonical unify_map_at. *) | |
(* Coercion unwrap : wrapped >-> map. *) | |
(* Coercion wrap : map_class >-> wrapped. *) | |
(* Canonical wrap. *) | |
End Exports. | |
End Bilinear. | |
Include Bilinear.Exports. | |
Section BilinearTheory. | |
Variable R : ringType. | |
Section GenericProperties. | |
Variables (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V). | |
Variable f : {bilinear U -> U' -> V | s & s'}. | |
Lemma linear0r z : f z 0 = 0. Proof. by rewrite raddf0. Qed. | |
Lemma linearNr z : {morph f z : x / - x}. Proof. exact: raddfN. Qed. | |
Lemma linearDr z : {morph f z : x y / x + y}. Proof. exact: raddfD. Qed. | |
Lemma linearBr z : {morph f z : x y / x - y}. Proof. exact: raddfB. Qed. | |
Lemma linearMnr z n : {morph f z : x / x *+ n}. Proof. exact: raddfMn. Qed. | |
Lemma linearMNnr z n : {morph f z : x / x *- n}. Proof. exact: raddfMNn. Qed. | |
Lemma linear_sumr z I r (P : pred I) E : | |
f z (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f z (E i). | |
Proof. exact: raddf_sum. Qed. | |
Lemma linearZr_LR z : scalable_for s' (f z). Proof. exact: linearZ_LR. Qed. | |
Lemma linearPr z a : {morph f z : u v / a *: u + v >-> s' a u + v}. | |
Proof. exact: linearP. Qed. | |
Lemma applyrE x : applyr f x =1 f^~ x. Proof. by []. Qed. | |
Lemma linear0l z : f 0 z = 0. Proof. by rewrite -applyrE raddf0. Qed. | |
Lemma linearNl z : {morph f^~ z : x / - x}. | |
Proof. by move=> ?; rewrite -applyrE raddfN. Qed. | |
Lemma linearDl z : {morph f^~ z : x y / x + y}. | |
Proof. by move=> ??; rewrite -applyrE raddfD. Qed. | |
Lemma linearBl z : {morph f^~ z : x y / x - y}. | |
Proof. by move=> ??; rewrite -applyrE raddfB. Qed. | |
Lemma linearMnl z n : {morph f^~ z : x / x *+ n}. | |
Proof. by move=> ?; rewrite -applyrE raddfMn. Qed. | |
Lemma linearMNnl z n : {morph f^~ z : x / x *- n}. | |
Proof. by move=> ?; rewrite -applyrE raddfMNn. Qed. | |
Lemma linear_suml z I r (P : pred I) E : | |
f (\sum_(i <- r | P i) E i) z = \sum_(i <- r | P i) f (E i) z. | |
Proof. by rewrite -applyrE raddf_sum. Qed. | |
Lemma linearZl_LR z : scalable_for s (f^~ z). | |
Proof. by move=> ??; rewrite -applyrE linearZ_LR. Qed. | |
Lemma linearPl z a : {morph f^~ z : u v / a *: u + v >-> s a u + v}. | |
Proof. by move=> ??; rewrite -applyrE linearP. Qed. | |
End GenericProperties. | |
Section BidirectionalLinearZ. | |
Variables (U : lmodType R) (V : zmodType) (s : R -> V -> V). | |
Variables (S : ringType) (h : S -> V -> V) (h_law : GRing.Scale.law h). | |
(* Lemma linearZr z c a (h_c := GRing.Scale.op h_law c) (f : GRing.Linear.map_for U s a h_c) u : *) | |
(* f z (a *: u) = h_c (GRing.Linear.wrap (f z) u). *) | |
(* Proof. by rewrite linearZ_LR; case: f => f /= ->. Qed. *) | |
End BidirectionalLinearZ. | |
End BilinearTheory. | |
Canonical rev_mulmx (R : ringType) m n p := @RevOp _ _ _ (@mulmxr R m n p) | |
(@mulmx R m n p) (fun _ _ => erefl). | |
Canonical mulmx_bilinear (R : comRingType) m n p := [bilinear of @mulmx R m n p]. | |
(* Section classfun. *) | |
(* Import mathcomp.character.classfun. *) | |
(* Canonical rev_cfdot (gT : finGroupType) (B : {set gT}) := *) | |
(* @RevOp _ _ _ (@cfdotr_head gT B tt) *) | |
(* (@cfdot gT B) (fun _ _ => erefl). *) | |
(* Section Cfdot. *) | |
(* Variables (gT : finGroupType) (G : {group gT}). *) | |
(* Lemma cfdot_is_linear xi : linear_for (@conjC _ \; *%R) (cfdot xi : 'CF(G) -> algC^o). *) | |
(* Proof. *) | |
(* move=> /= a phi psi; rewrite cfdotC -cfdotrE linearD linearZ /=. *) | |
(* by rewrite !['[_, xi]]cfdotC rmorphD rmorphM !conjCK. *) | |
(* Qed. *) | |
(* Canonical cfdot_additive xi := Additive (cfdot_is_linear xi). *) | |
(* Canonical cfdot_linear xi := Linear (cfdot_is_linear xi). *) | |
(* End Cfdot. *) | |
(* Canonical cfdot_bilinear (gT : finGroupType) (B : {group gT}) := *) | |
(* [bilinear of @cfdot gT B]. *) | |
(* End classfun. *) | |
Section BilinearForms. | |
Variables (R : fieldType) (theta : {rmorphism R -> R}). | |
Variables (n : nat) (M : 'M[R]_n). | |
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n). | |
Definition form u v := (u *m M *m (v ^t theta)) 0 0. | |
Local Notation "''[' u , v ]" := (form u%R v%R) : ring_scope. | |
Local Notation "''[' u ]" := '[u, u] : ring_scope. | |
Lemma form0l u : '[0, u] = 0. | |
Proof. by rewrite /form !mul0mx mxE. Qed. | |
Lemma form0r u : '[u, 0] = 0. | |
Proof. by rewrite /form trmx0 map_mx0 mulmx0 mxE. Qed. | |
Lemma formDl u v w : '[u + v, w] = '[u, w] + '[v, w]. | |
Proof. by rewrite /form !mulmxDl mxE. Qed. | |
Lemma formDr u v w : '[u, v + w] = '[u, v] + '[u, w]. | |
Proof. by rewrite /form linearD !map_mxD !mulmxDr mxE. Qed. | |
Lemma formZr a u v : '[u, a *: v] = theta a * '[u, v]. | |
Proof. by rewrite /form !(linearZ, map_mxZ) /= mxE. Qed. | |
Lemma formZl a u v : '[a *: u, v] = a * '[u, v]. | |
Proof. | |
by do !rewrite /form -[_ *: _ *m _]/(mulmxr _ _) linearZ /=; rewrite mxE. | |
Qed. | |
Lemma formNl u v : '[- u, v] = - '[u, v]. | |
Proof. by rewrite -scaleN1r formZl mulN1r. Qed. | |
Lemma formNr u v : '[u, - v] = - '[u, v]. | |
Proof. by rewrite -scaleN1r formZr rmorphN1 mulN1r. Qed. | |
Lemma formee i j : '['e_i, 'e_j] = M i j. | |
Proof. | |
rewrite /form -rowE -map_trmx map_delta_mx -[M in LHS]trmxK. | |
by rewrite -tr_col -trmx_mul -rowE !mxE. | |
Qed. | |
Lemma form0_eq0 : M = 0 -> forall u v, '[u, v] = 0. | |
Proof. by rewrite/form=> -> u v; rewrite mulmx0 mul0mx mxE. Qed. | |
End BilinearForms. | |
Section Sesquilinear. | |
Variable R : fieldType. | |
Variable n : nat. | |
Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n). | |
Section Def. | |
Variable eps_theta : (bool * {rmorphism R -> R}). | |
Definition sesqui := | |
[qualify M : 'M_n | M == ((-1) ^+ eps_theta.1) *: M ^t eps_theta.2]. | |
Fact sesqui_key : pred_key sesqui. Proof. by []. Qed. | |
Canonical sesqui_keyed := KeyedQualifier sesqui_key. | |
End Def. | |
Local Notation "eps_theta .-sesqui" := (sesqui eps_theta). | |
Variables (eps : bool) (theta : {rmorphism R -> R}). | |
Variables (M : 'M[R]_n). | |
Local Notation "''[' u , v ]" := (form theta M u%R v%R) : ring_scope. | |
Local Notation "''[' u ]" := '[u, u] : ring_scope. | |
Lemma sesquiE : (M \is (eps,theta).-sesqui) = (M == (-1) ^+ eps *: M ^t theta). | |
Proof. by rewrite qualifE. Qed. | |
Lemma sesquiP : reflect (M = (-1) ^+ eps *: M ^t theta) | |
(M \is (eps,theta).-sesqui). | |
Proof. by rewrite sesquiE; apply/eqP. Qed. | |
Hypothesis (thetaK : involutive theta). | |
Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). | |
Lemma trmx_sesqui : M^T = (-1) ^+ eps *: M ^ theta. | |
Proof. | |
rewrite [in LHS](sesquiP _) // -mul_scalar_mx trmx_mul. | |
by rewrite tr_scalar_mx mul_mx_scalar map_trmx trmxK. | |
Qed. | |
Lemma maptrmx_sesqui : M^t theta = (-1) ^+ eps *: M. | |
Proof. | |
by rewrite trmx_sesqui map_mxZ rmorph_sign -map_mx_comp eq_map_mx_id. | |
Qed. | |
Lemma formC u v : '[u, v] = (-1) ^+ eps * theta '[v, u]. | |
Proof. | |
rewrite /form [M in LHS](sesquiP _) // -mulmxA !mxE rmorph_sum mulr_sumr. | |
apply: eq_bigr => /= i _; rewrite !(mxE, mulr_sumr, mulr_suml, rmorph_sum). | |
apply: eq_bigr => /= j _; rewrite !mxE !rmorphM mulrCA -!mulrA. | |
by congr (_ * _); rewrite mulrA mulrC thetaK. | |
Qed. | |
Lemma form_eq0C u v : ('[u, v] == 0) = ('[v, u] == 0). | |
Proof. by rewrite formC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed. | |
Definition ortho m (B : 'M_(m,n)) := (kermx (M *m (B ^t theta))). | |
Local Notation "B ^_|_" := (ortho B) : ring_scope. | |
Local Notation "A _|_ B" := (A%MS <= B^_|_)%MS : ring_scope. | |
Lemma normalE u v : (u _|_ v) = ('[u, v] == 0). | |
Proof. | |
by rewrite (sameP sub_kermxP eqP) mulmxA [_ *m _^t _]mx11_scalar fmorph_eq0. | |
Qed. | |
Lemma form_eq0P {u v} : reflect ('[u, v] = 0) (u _|_ v). | |
Proof. by rewrite normalE; apply/eqP. Qed. | |
Lemma normalP p q (A : 'M_(p, n)) (B :'M_(q, n)) : | |
reflect (forall (u v : 'rV_n), (u <= A)%MS -> (v <= B)%MS -> u _|_ v) | |
(A _|_ B). | |
Proof. | |
apply: (iffP idP) => AnB. | |
move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //. | |
apply/sub_kermxP; have /submxP [w ->] := vB. | |
rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA. | |
by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx. | |
apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP. | |
suff: forall m (v : 'rV[R]_m), | |
(forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0. | |
apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //. | |
by apply/submxP; exists 'e_i. | |
move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)). | |
rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE. | |
apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK. | |
by rewrite -(map_delta_mx theta) map_trmx Hv. | |
Qed. | |
Lemma normalC p q (A : 'M_(p, n)) (B :'M_(q, n)) : (A _|_ B) = (B _|_ A). | |
Proof. | |
gen have nC : p q A B / A _|_ B -> B _|_ A; last by apply/idP/idP; apply/nC. | |
move=> AnB; apply/normalP => u v ? ?; rewrite normalE. | |
rewrite formC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=. | |
by rewrite -normalE (normalP _ _ AnB). | |
Qed. | |
Lemma normal_ortho_mx p (A : 'M_(p, n)) : ((A^_|_) _|_ A). | |
Proof. by []. Qed. | |
Lemma normal_mx_ortho p (A : 'M_(p, n)) : (A _|_ (A^_|_)). | |
Proof. by rewrite normalC. Qed. | |
Lemma rank_normal u : (\rank (u ^_|_) >= n.-1)%N. | |
Proof. | |
rewrite mxrank_ker -subn1 leq_sub2l //. | |
by rewrite (leq_trans (mxrankM_maxr _ _)) // rank_leq_col. | |
Qed. | |
Definition rad := 1%:M^_|_. | |
Lemma rad_ker : rad = kermx M. | |
Proof. by rewrite /rad /ortho trmx1 map_mx1 mulmx1. Qed. | |
(* Pythagore *) | |
Theorem formDd u v : u _|_ v -> '[u + v] = '[u] + '[v]. | |
Proof. | |
move=> uNv; rewrite formDl !formDr ['[v, u]]formC. | |
by rewrite ['[u, v]](form_eq0P _) // rmorph0 mulr0 addr0 add0r. | |
Qed. | |
Lemma formZ a u : '[a *: u]= (a * theta a) * '[u]. | |
Proof. by rewrite formZl formZr mulrA. Qed. | |
Lemma formN u : '[- u] = '[u]. | |
Proof. by rewrite formNr formNl opprK. Qed. | |
Lemma form_sign m u : '[(-1) ^+ m *: u] = '[u]. | |
Proof. by rewrite -signr_odd scaler_sign; case: odd; rewrite ?formN. Qed. | |
Lemma formD u v : let d := '[u, v] in | |
'[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d). | |
Proof. by rewrite formDl !formDr ['[v, _]]formC [_ + '[v]]addrC addrACA. Qed. | |
Lemma formB u v : let d := '[u, v] in | |
'[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d). | |
Proof. by rewrite formD formN !formNr rmorphN mulrN -opprD. Qed. | |
Lemma formBd u v : u _|_ v -> '[u - v] = '[u] + '[v]. | |
Proof. | |
by move=> uTv; rewrite formDd ?formN // normalE formNr oppr_eq0 -normalE. | |
Qed. | |
(* Lemma formJ u v : '[u ^ theta, v ^ theta] = (-1) ^+ eps * theta '[u, v]. *) | |
(* Proof. *) | |
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *) | |
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *) | |
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *) | |
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *) | |
(* Lemma formJ u : '[u ^ theta] = (-1) ^+ eps * '[u]. *) | |
(* Proof. *) | |
(* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *) | |
(* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *) | |
(* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *) | |
(* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *) | |
(* rewrite !map_mxM. *) | |
(* rewrite -map_mx_comp eq_map_mx_id //. *) | |
(* !linearZr_LR /=. linearZ. *) | |
(* linearZl. *) | |
(* rewrite trmx_sesqui. *) | |
(* rewrite mapmx. *) | |
(* rewrite map *) | |
(* apply/matrixP. *) | |
(* rewrite formC. *) | |
(* Proof. by rewrite cfdot_conjC geC0_conj // cfnorm_ge0. Qed. *) | |
(* Lemma cfCauchySchwarz u v : *) | |
(* `|'[u, v]| ^+ 2 <= '[u] * '[v] ?= iff ~~ free (u :: v). *) | |
(* Proof. *) | |
(* rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. *) | |
(* have [-> | nz_v] /= := altP (v =P 0). *) | |
(* by apply/lerifP; rewrite !cfdot0r normCK mul0r mulr0. *) | |
(* without loss ou: u / '[u, v] = 0. *) | |
(* move=> IHo; pose a := '[u, v] / '[v]; pose u1 := u - a *: v. *) | |
(* have ou: '[u1, v] = 0. *) | |
(* by rewrite cfdotBl cfdotZl divfK ?cfnorm_eq0 ?subrr. *) | |
(* rewrite (canRL (subrK _) (erefl u1)) rpredDr ?rpredZ ?memv_line //. *) | |
(* rewrite cfdotDl ou add0r cfdotZl normrM (ger0_norm (cfnorm_ge0 _)). *) | |
(* rewrite exprMn mulrA -cfnormZ cfnormDd; last by rewrite cfdotZr ou mulr0. *) | |
(* by have:= IHo _ ou; rewrite mulrDl -lerif_subLR subrr ou normCK mul0r. *) | |
(* rewrite ou normCK mul0r; split; first by rewrite mulr_ge0 ?cfnorm_ge0. *) | |
(* rewrite eq_sym mulf_eq0 orbC cfnorm_eq0 (negPf nz_v) /=. *) | |
(* apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite cfdotZr ou mulr0. *) | |
(* by rewrite cfnorm_eq0 => /eqP->; apply: rpred0. *) | |
(* Qed. *) | |
End Sesquilinear. | |
Notation "eps_theta .-sesqui" := (sesqui _ eps_theta) : ring_scope. | |
Notation symmetric_form := (false, [rmorphism of idfun]).-sesqui. | |
Notation skew := (true, [rmorphism of idfun]).-sesqui. | |
Notation hermitian := (false, @conjC _).-sesqui. | |
(* Section ClassificationForm. *) | |
(* Variables (F : fieldType) (L : fieldExtType) (theat : 'Aut()) *) | |
(* Notation "''[' u , v ]_ M" := (form M%R u%R v%R) : ring_scope. *) | |
(* Notation "''[' u ]_ M" := (form M%R u%R u%R) : ring_scope. *) | |
(* Hypothesis (thetaK : involutive theta). *) | |
(* Lemma sesqui_test M : (forall u v, '[v, u]_M = 0 -> '[u, v]_M = 0) -> *) | |
(* {eps | eps^+2 = 1 & M \is (eps,theta).-sesqui}. *) | |
(* Proof. *) | |
(* pose *) | |
(* [/\ forall u, '[u] = 0, theta =1 id & eps = -1] *) | |
(* \/ ((exists u, '[u] != 0) /\ (eps = 1)). *) | |
(* Proof. *) | |
(* move=> M_neq0 form_eq0. *) | |
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]; last first. *) | |
(* rewrite negb_forall => /existsP [i ei_neq0]. *) | |
(* right; split; first by exists ('e_i). *) | |
(* apply/eqP; *) | |
(* contraT *) | |
(* suff [f_eq0|] : (forall u, '[u] = 0) \/ (exists u, '[u] != 0). *) | |
(* left; split=> //. *) | |
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *) | |
(* suff /eqP : eps ^+ 2 = 1. *) | |
(* rewrite -subr_eq0 subr_sqr_1 mulf_eq0. *) | |
(* move => /orP[]; rewrite addr_eq0 ?opprK=> /eqP eps_eq. *) | |
(* right; split=> //. *) | |
(* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *) | |
(* have := sesquiC u u. *) | |
(* rewrite !linearZ /= -[eps *: _ *m _]/(mulmxr _ _) linearZ /= mxE; congr (_ * _). *) | |
(* have : u = map_mx theta (map_mx theta u). *) | |
(* apply/rowP=> i; rewrite !mxE. *) | |
(* rewrite -[in LHS]mulmxA -map_mxM. *) | |
(* rewrite *) | |
(* !mxE rmorph_sum; apply: eq_bigr => /= i _; rewrite !mxE. *) | |
(* rewrite !rmorphM thetaK rmorph_sum. *) | |
(* Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). *) | |
(* rewrite -[a *: u *m _]/(mulmxr _ _). *) | |
(* rewrite linearZ. *) | |
(* Variables (R : fieldType) (n : nat). *) | |
(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *) | |
(* Lemma normal_sym k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : *) | |
(* A _|_ B = B _|_ A. *) | |
(* Proof. *) | |
(* rewrite !(sameP sub_kermxP eqP) -{1}[A]trmxK -trmx_mul. *) | |
(* by rewrite -{1}trmx0 (inj_eq (@trmx_inj _ _ _)). *) | |
(* Qed. *) | |
(* Lemma normalNm k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : (- A) _|_ B = A _|_ B. *) | |
(* Proof. by rewrite eqmx_opp. Qed. *) | |
(* Lemma normalmN k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : A _|_ (- B) = A _|_ B. *) | |
(* Proof. by rewrite ![A _|_ _]normal_sym normalNm. Qed. *) | |
(* Lemma normalDm k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *) | |
(* (A + B _|_ C) = (A _|_ C) && (B _|_ C). *) | |
(* Proof. by rewrite addsmxE !(sameP sub_kermxP eqP) mul_col_mx col_mx_eq0. Qed. *) | |
(* Lemma normalmD k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *) | |
(* (A _|_ B + C) = (A _|_ B) && (A _|_ C). *) | |
(* Proof. by rewrite ![A _|_ _]normal_sym normalDm. Qed. *) | |
(* Definition dot (u v : 'rV[R]_n) : R := (u *m v^T) 0 0. *) | |
(* Notation "''[' u , v ]" := (dot u v) : ring_scope. *) | |
(* Notation "''[' u ]" := '[u, u]%MS : ring_scope. *) | |
(* Lemma dotmulE (u v : 'rV[R]_n) : '[u, v] = \sum_k u``_k * v``_k. *) | |
(* Proof. by rewrite [LHS]mxE; apply: eq_bigr=> i; rewrite mxE. Qed. *) | |
(* Lemma normalvv (u v : 'rV[R]_n) : (u _|_ v) = ('[u, v] == 0). *) | |
(* Proof. by rewrite (sameP sub_kermxP eqP) [_ *m _^T]mx11_scalar fmorph_eq0. Qed. *) | |
(* End Normal. *) | |
(* Local Notation "''[' u , v ]" := (form u v) : ring_scope. *) | |
(* Local Notation "''[' u ]" := '[u%R, u%R] : ring_scope. *) | |
(* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *) | |