From mathcomp Require Import all_ssreflect ssralg fingroup zmodp poly ssrnum. From mathcomp Require Import matrix mxalgebra vector falgebra ssrnum algC algnum. From mathcomp Require Import fieldext. From mathcomp Require Import vector. (* From mathcomp Require classfun. *) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. Import GRing.Theory Num.Theory. Reserved Notation "'[ u , v ]" (at level 2, format "'[hv' ''[' u , '/ ' v ] ']'"). Reserved Notation "'[ u , v ]_ M" (at level 2, format "'[hv' ''[' u , '/ ' v ]_ M ']'"). Reserved Notation "'[ u ]_ M" (at level 2, format "''[' u ]_ M"). Reserved Notation "'[ u ]" (at level 2, format "''[' u ]"). Reserved Notation "u '``_' i" (at level 3, i at level 2, left associativity, format "u '``_' i"). Reserved Notation "A ^_|_" (at level 8, format "A ^_|_"). Reserved Notation "A _|_ B" (at level 69, format "A _|_ B"). Reserved Notation "eps_theta .-sesqui" (at level 2, format "eps_theta .-sesqui"). Notation "u '``_' i" := (u (GRing.zero (Zp_zmodType O)) i) : ring_scope. Notation "''e_' i" := (delta_mx 0 i) (format "''e_' i", at level 3) : ring_scope. Local Notation "M ^ phi" := (map_mx phi M). Local Notation "M ^t phi" := (map_mx phi (M ^T)) (phi at level 30, at level 30). Structure revop X Y Z (f : Y -> X -> Z) := RevOp { fun_of_revop :> X -> Y -> Z; _ : forall x, f x =1 fun_of_revop^~ x }. Lemma eq_map_mx (R S : ringType) m n (M : 'M[R]_(m,n)) (g f : R -> S) : f =1 g -> M ^ f = M ^ g. Proof. by move=> eq_fg; apply/matrixP=> i j; rewrite !mxE. Qed. Lemma map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) : M ^ id = M. Proof. by apply/matrixP=> i j; rewrite !mxE. Qed. Lemma eq_map_mx_id (R : ringType) m n (M : 'M[R]_(m,n)) (f : R -> R) : f =1 id -> M ^ f = M. Proof. by move=> /eq_map_mx->; rewrite map_mx_id. Qed. Module Bilinear. Section ClassDef. Variables (R : ringType) (U U' : lmodType R) (V : zmodType) (s s' : R -> V -> V). Implicit Type phUU'V : phant (U -> U' -> V). Local Coercion GRing.Scale.op : GRing.Scale.law >-> Funclass. Definition axiom (f : U -> U' -> V) (s_law : GRing.Scale.law s) (eqs : s = s_law) (s'_law : GRing.Scale.law s') (eqs' : s' = s'_law) := ((forall u', GRing.Linear.axiom (f^~ u') eqs) * (forall u, GRing.Linear.axiom (f u) eqs'))%type. Record class_of (f : U -> U' -> V) : Prop := Class { basel : forall u', GRing.Linear.class_of s (f^~ u'); baser : forall u, GRing.Linear.class_of s' (f u) }. Lemma class_of_axiom f s_law s'_law Ds Ds' : @axiom f s_law Ds s'_law Ds' -> class_of f. Proof. by pose coa := GRing.Linear.class_of_axiom; move=> [/(_ _) /coa ? /(_ _) /coa]. Qed. Structure map phUU'V := Pack {apply; _ : class_of apply}. Local Coercion apply : map >-> Funclass. Definition class (phUU'V : _) (cF : map phUU'V) := let: Pack _ c as cF' := cF return class_of cF' in c. Canonical additiver phU'V phUU'V (u : U) cF := GRing.Additive.Pack phU'V (baser (@class phUU'V cF) u). Canonical linearr phU'V phUU'V (u : U) cF := GRing.Linear.Pack phU'V (baser (@class phUU'V cF) u). (* Fact applyr_key : unit. Proof. exact. Qed. *) Definition applyr_head t (f : U -> U' -> V) u v := let: tt := t in f v u. Notation applyr := (@applyr_head tt). Canonical additivel phUV phUU'V (u' : U') (cF : map _) := @GRing.Additive.Pack _ _ phUV (applyr cF u') (basel (@class phUU'V cF) u'). Canonical linearl phUV phUU'V (u' : U') (cF : map _) := @GRing.Linear.Pack _ _ _ _ phUV (applyr cF u') (basel (@class phUU'V cF) u'). Definition pack (phUV : phant (U -> V)) (phU'V : phant (U' -> V)) (revf : U' -> U -> V) (rf : revop revf) f (g : U -> U' -> V) of (g = fun_of_revop rf) := fun (bFl : U' -> GRing.Linear.map s phUV) flc of (forall u', revf u' = bFl u') & (forall u', phant_id (GRing.Linear.class (bFl u')) (flc u')) => fun (bFr : U -> GRing.Linear.map s' phU'V) frc of (forall u, g u = bFr u) & (forall u, phant_id (GRing.Linear.class (bFr u)) (frc u)) => @Pack (Phant _) f (Class flc frc). (* (* Support for right-to-left rewriting with the generic linearZ rule. *) *) (* Notation mapUV := (map (Phant (U -> U' -> V))). *) (* Definition map_class := mapUV. *) (* Definition map_at (a : R) := mapUV. *) (* Structure map_for a s_a := MapFor {map_for_map : mapUV; _ : s a = s_a}. *) (* Definition unify_map_at a (f : map_at a) := MapFor f (erefl (s a)). *) (* Structure wrapped := Wrap {unwrap : mapUV}. *) (* Definition wrap (f : map_class) := Wrap f. *) End ClassDef. Module Exports. Delimit Scope linear_ring_scope with linR. Notation bilinear_for s s' f := (axiom f (erefl s) (erefl s')). Notation bilinear f := (bilinear_for *:%R *:%R f). Notation biscalar f := (bilinear_for *%R *%R f). Notation bilmorphism_for s s' f := (class_of s s' f). Notation bilmorphism f := (bilmorphism_for *:%R *:%R f). Coercion class_of_axiom : axiom >-> bilmorphism_for. Coercion baser : bilmorphism_for >-> Funclass. Coercion apply : map >-> Funclass. Notation "{ 'bilinear' fUV | s & s' }" := (map s s' (Phant fUV)) (at level 0, format "{ 'bilinear' fUV | s & s' }") : ring_scope. Notation "{ 'bilinear' fUV | s }" := (map s.1 s.2 (Phant fUV)) (at level 0, format "{ 'bilinear' fUV | s }") : ring_scope. Notation "{ 'bilinear' fUV }" := {bilinear fUV | *:%R & *:%R} (at level 0, format "{ 'bilinear' fUV }") : ring_scope. Notation "{ 'biscalar' U }" := {bilinear U -> U -> _ | *%R & *%R} (at level 0, format "{ 'biscalar' U }") : ring_scope. Notation "[ 'bilinear' 'of' f 'as' g ]" := (@pack _ _ _ _ _ _ _ _ _ _ f g erefl _ _ (fun=> erefl) (fun=> idfun) _ _ (fun=> erefl) (fun=> idfun)). Notation "[ 'bilinear' 'of' f ]" := [bilinear of f as f] (at level 0, format "[ 'bilinear' 'of' f ]") : form_scope. Coercion additiver : map >-> GRing.Additive.map. Coercion linearr : map >-> GRing.Linear.map. Canonical additiver. Canonical linearr. Canonical additivel. Canonical linearl. Notation applyr := (@applyr_head _ _ _ _ tt). (* Canonical additive. *) (* (* Support for right-to-left rewriting with the generic linearZ rule. *) *) (* Coercion map_for_map : map_for >-> map. *) (* Coercion unify_map_at : map_at >-> map_for. *) (* Canonical unify_map_at. *) (* Coercion unwrap : wrapped >-> map. *) (* Coercion wrap : map_class >-> wrapped. *) (* Canonical wrap. *) End Exports. End Bilinear. Include Bilinear.Exports. Section BilinearTheory. Variable R : ringType. Section GenericProperties. Variables (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V). Variable f : {bilinear U -> U' -> V | s & s'}. Lemma linear0r z : f z 0 = 0. Proof. by rewrite raddf0. Qed. Lemma linearNr z : {morph f z : x / - x}. Proof. exact: raddfN. Qed. Lemma linearDr z : {morph f z : x y / x + y}. Proof. exact: raddfD. Qed. Lemma linearBr z : {morph f z : x y / x - y}. Proof. exact: raddfB. Qed. Lemma linearMnr z n : {morph f z : x / x *+ n}. Proof. exact: raddfMn. Qed. Lemma linearMNnr z n : {morph f z : x / x *- n}. Proof. exact: raddfMNn. Qed. Lemma linear_sumr z I r (P : pred I) E : f z (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f z (E i). Proof. exact: raddf_sum. Qed. Lemma linearZr_LR z : scalable_for s' (f z). Proof. exact: linearZ_LR. Qed. Lemma linearPr z a : {morph f z : u v / a *: u + v >-> s' a u + v}. Proof. exact: linearP. Qed. Lemma applyrE x : applyr f x =1 f^~ x. Proof. by []. Qed. Lemma linear0l z : f 0 z = 0. Proof. by rewrite -applyrE raddf0. Qed. Lemma linearNl z : {morph f^~ z : x / - x}. Proof. by move=> ?; rewrite -applyrE raddfN. Qed. Lemma linearDl z : {morph f^~ z : x y / x + y}. Proof. by move=> ??; rewrite -applyrE raddfD. Qed. Lemma linearBl z : {morph f^~ z : x y / x - y}. Proof. by move=> ??; rewrite -applyrE raddfB. Qed. Lemma linearMnl z n : {morph f^~ z : x / x *+ n}. Proof. by move=> ?; rewrite -applyrE raddfMn. Qed. Lemma linearMNnl z n : {morph f^~ z : x / x *- n}. Proof. by move=> ?; rewrite -applyrE raddfMNn. Qed. Lemma linear_suml z I r (P : pred I) E : f (\sum_(i <- r | P i) E i) z = \sum_(i <- r | P i) f (E i) z. Proof. by rewrite -applyrE raddf_sum. Qed. Lemma linearZl_LR z : scalable_for s (f^~ z). Proof. by move=> ??; rewrite -applyrE linearZ_LR. Qed. Lemma linearPl z a : {morph f^~ z : u v / a *: u + v >-> s a u + v}. Proof. by move=> ??; rewrite -applyrE linearP. Qed. End GenericProperties. Section BidirectionalLinearZ. Variables (U : lmodType R) (V : zmodType) (s : R -> V -> V). Variables (S : ringType) (h : S -> V -> V) (h_law : GRing.Scale.law h). (* Lemma linearZr z c a (h_c := GRing.Scale.op h_law c) (f : GRing.Linear.map_for U s a h_c) u : *) (* f z (a *: u) = h_c (GRing.Linear.wrap (f z) u). *) (* Proof. by rewrite linearZ_LR; case: f => f /= ->. Qed. *) End BidirectionalLinearZ. End BilinearTheory. Canonical rev_mulmx (R : ringType) m n p := @RevOp _ _ _ (@mulmxr R m n p) (@mulmx R m n p) (fun _ _ => erefl). Canonical mulmx_bilinear (R : comRingType) m n p := [bilinear of @mulmx R m n p]. (* Section classfun. *) (* Import mathcomp.character.classfun. *) (* Canonical rev_cfdot (gT : finGroupType) (B : {set gT}) := *) (* @RevOp _ _ _ (@cfdotr_head gT B tt) *) (* (@cfdot gT B) (fun _ _ => erefl). *) (* Section Cfdot. *) (* Variables (gT : finGroupType) (G : {group gT}). *) (* Lemma cfdot_is_linear xi : linear_for (@conjC _ \; *%R) (cfdot xi : 'CF(G) -> algC^o). *) (* Proof. *) (* move=> /= a phi psi; rewrite cfdotC -cfdotrE linearD linearZ /=. *) (* by rewrite !['[_, xi]]cfdotC rmorphD rmorphM !conjCK. *) (* Qed. *) (* Canonical cfdot_additive xi := Additive (cfdot_is_linear xi). *) (* Canonical cfdot_linear xi := Linear (cfdot_is_linear xi). *) (* End Cfdot. *) (* Canonical cfdot_bilinear (gT : finGroupType) (B : {group gT}) := *) (* [bilinear of @cfdot gT B]. *) (* End classfun. *) Section BilinearForms. Variables (R : fieldType) (theta : {rmorphism R -> R}). Variables (n : nat) (M : 'M[R]_n). Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n). Definition form u v := (u *m M *m (v ^t theta)) 0 0. Local Notation "''[' u , v ]" := (form u%R v%R) : ring_scope. Local Notation "''[' u ]" := '[u, u] : ring_scope. Lemma form0l u : '[0, u] = 0. Proof. by rewrite /form !mul0mx mxE. Qed. Lemma form0r u : '[u, 0] = 0. Proof. by rewrite /form trmx0 map_mx0 mulmx0 mxE. Qed. Lemma formDl u v w : '[u + v, w] = '[u, w] + '[v, w]. Proof. by rewrite /form !mulmxDl mxE. Qed. Lemma formDr u v w : '[u, v + w] = '[u, v] + '[u, w]. Proof. by rewrite /form linearD !map_mxD !mulmxDr mxE. Qed. Lemma formZr a u v : '[u, a *: v] = theta a * '[u, v]. Proof. by rewrite /form !(linearZ, map_mxZ) /= mxE. Qed. Lemma formZl a u v : '[a *: u, v] = a * '[u, v]. Proof. by do !rewrite /form -[_ *: _ *m _]/(mulmxr _ _) linearZ /=; rewrite mxE. Qed. Lemma formNl u v : '[- u, v] = - '[u, v]. Proof. by rewrite -scaleN1r formZl mulN1r. Qed. Lemma formNr u v : '[u, - v] = - '[u, v]. Proof. by rewrite -scaleN1r formZr rmorphN1 mulN1r. Qed. Lemma formee i j : '['e_i, 'e_j] = M i j. Proof. rewrite /form -rowE -map_trmx map_delta_mx -[M in LHS]trmxK. by rewrite -tr_col -trmx_mul -rowE !mxE. Qed. Lemma form0_eq0 : M = 0 -> forall u v, '[u, v] = 0. Proof. by rewrite/form=> -> u v; rewrite mulmx0 mul0mx mxE. Qed. End BilinearForms. Section Sesquilinear. Variable R : fieldType. Variable n : nat. Implicit Types (a b : R) (u v : 'rV[R]_n) (N P Q : 'M[R]_n). Section Def. Variable eps_theta : (bool * {rmorphism R -> R}). Definition sesqui := [qualify M : 'M_n | M == ((-1) ^+ eps_theta.1) *: M ^t eps_theta.2]. Fact sesqui_key : pred_key sesqui. Proof. by []. Qed. Canonical sesqui_keyed := KeyedQualifier sesqui_key. End Def. Local Notation "eps_theta .-sesqui" := (sesqui eps_theta). Variables (eps : bool) (theta : {rmorphism R -> R}). Variables (M : 'M[R]_n). Local Notation "''[' u , v ]" := (form theta M u%R v%R) : ring_scope. Local Notation "''[' u ]" := '[u, u] : ring_scope. Lemma sesquiE : (M \is (eps,theta).-sesqui) = (M == (-1) ^+ eps *: M ^t theta). Proof. by rewrite qualifE. Qed. Lemma sesquiP : reflect (M = (-1) ^+ eps *: M ^t theta) (M \is (eps,theta).-sesqui). Proof. by rewrite sesquiE; apply/eqP. Qed. Hypothesis (thetaK : involutive theta). Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). Lemma trmx_sesqui : M^T = (-1) ^+ eps *: M ^ theta. Proof. rewrite [in LHS](sesquiP _) // -mul_scalar_mx trmx_mul. by rewrite tr_scalar_mx mul_mx_scalar map_trmx trmxK. Qed. Lemma maptrmx_sesqui : M^t theta = (-1) ^+ eps *: M. Proof. by rewrite trmx_sesqui map_mxZ rmorph_sign -map_mx_comp eq_map_mx_id. Qed. Lemma formC u v : '[u, v] = (-1) ^+ eps * theta '[v, u]. Proof. rewrite /form [M in LHS](sesquiP _) // -mulmxA !mxE rmorph_sum mulr_sumr. apply: eq_bigr => /= i _; rewrite !(mxE, mulr_sumr, mulr_suml, rmorph_sum). apply: eq_bigr => /= j _; rewrite !mxE !rmorphM mulrCA -!mulrA. by congr (_ * _); rewrite mulrA mulrC thetaK. Qed. Lemma form_eq0C u v : ('[u, v] == 0) = ('[v, u] == 0). Proof. by rewrite formC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed. Definition ortho m (B : 'M_(m,n)) := (kermx (M *m (B ^t theta))). Local Notation "B ^_|_" := (ortho B) : ring_scope. Local Notation "A _|_ B" := (A%MS <= B^_|_)%MS : ring_scope. Lemma normalE u v : (u _|_ v) = ('[u, v] == 0). Proof. by rewrite (sameP sub_kermxP eqP) mulmxA [_ *m _^t _]mx11_scalar fmorph_eq0. Qed. Lemma form_eq0P {u v} : reflect ('[u, v] = 0) (u _|_ v). Proof. by rewrite normalE; apply/eqP. Qed. Lemma normalP p q (A : 'M_(p, n)) (B :'M_(q, n)) : reflect (forall (u v : 'rV_n), (u <= A)%MS -> (v <= B)%MS -> u _|_ v) (A _|_ B). Proof. apply: (iffP idP) => AnB. move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //. apply/sub_kermxP; have /submxP [w ->] := vB. rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA. by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx. apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP. suff: forall m (v : 'rV[R]_m), (forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0. apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //. by apply/submxP; exists 'e_i. move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)). rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE. apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK. by rewrite -(map_delta_mx theta) map_trmx Hv. Qed. Lemma normalC p q (A : 'M_(p, n)) (B :'M_(q, n)) : (A _|_ B) = (B _|_ A). Proof. gen have nC : p q A B / A _|_ B -> B _|_ A; last by apply/idP/idP; apply/nC. move=> AnB; apply/normalP => u v ? ?; rewrite normalE. rewrite formC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=. by rewrite -normalE (normalP _ _ AnB). Qed. Lemma normal_ortho_mx p (A : 'M_(p, n)) : ((A^_|_) _|_ A). Proof. by []. Qed. Lemma normal_mx_ortho p (A : 'M_(p, n)) : (A _|_ (A^_|_)). Proof. by rewrite normalC. Qed. Lemma rank_normal u : (\rank (u ^_|_) >= n.-1)%N. Proof. rewrite mxrank_ker -subn1 leq_sub2l //. by rewrite (leq_trans (mxrankM_maxr _ _)) // rank_leq_col. Qed. Definition rad := 1%:M^_|_. Lemma rad_ker : rad = kermx M. Proof. by rewrite /rad /ortho trmx1 map_mx1 mulmx1. Qed. (* Pythagore *) Theorem formDd u v : u _|_ v -> '[u + v] = '[u] + '[v]. Proof. move=> uNv; rewrite formDl !formDr ['[v, u]]formC. by rewrite ['[u, v]](form_eq0P _) // rmorph0 mulr0 addr0 add0r. Qed. Lemma formZ a u : '[a *: u]= (a * theta a) * '[u]. Proof. by rewrite formZl formZr mulrA. Qed. Lemma formN u : '[- u] = '[u]. Proof. by rewrite formNr formNl opprK. Qed. Lemma form_sign m u : '[(-1) ^+ m *: u] = '[u]. Proof. by rewrite -signr_odd scaler_sign; case: odd; rewrite ?formN. Qed. Lemma formD u v : let d := '[u, v] in '[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d). Proof. by rewrite formDl !formDr ['[v, _]]formC [_ + '[v]]addrC addrACA. Qed. Lemma formB u v : let d := '[u, v] in '[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d). Proof. by rewrite formD formN !formNr rmorphN mulrN -opprD. Qed. Lemma formBd u v : u _|_ v -> '[u - v] = '[u] + '[v]. Proof. by move=> uTv; rewrite formDd ?formN // normalE formNr oppr_eq0 -normalE. Qed. (* Lemma formJ u v : '[u ^ theta, v ^ theta] = (-1) ^+ eps * theta '[u, v]. *) (* Proof. *) (* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *) (* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *) (* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *) (* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *) (* Lemma formJ u : '[u ^ theta] = (-1) ^+ eps * '[u]. *) (* Proof. *) (* rewrite {1}/form -map_trmx -map_mx_comp (@eq_map_mx _ _ _ _ _ id) ?map_mx_id //. *) (* set x := (_ *m _); have -> : x 0 0 = theta ((x^t theta) 0 0) by rewrite !mxE. *) (* rewrite !trmx_mul trmxK map_trmx mulmxA !map_mxM. *) (* rewrite maptrmx_sesqui -!scalemxAr -scalemxAl mxE rmorphM rmorph_sign. *) (* rewrite !map_mxM. *) (* rewrite -map_mx_comp eq_map_mx_id //. *) (* !linearZr_LR /=. linearZ. *) (* linearZl. *) (* rewrite trmx_sesqui. *) (* rewrite mapmx. *) (* rewrite map *) (* apply/matrixP. *) (* rewrite formC. *) (* Proof. by rewrite cfdot_conjC geC0_conj // cfnorm_ge0. Qed. *) (* Lemma cfCauchySchwarz u v : *) (* `|'[u, v]| ^+ 2 <= '[u] * '[v] ?= iff ~~ free (u :: v). *) (* Proof. *) (* rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. *) (* have [-> | nz_v] /= := altP (v =P 0). *) (* by apply/lerifP; rewrite !cfdot0r normCK mul0r mulr0. *) (* without loss ou: u / '[u, v] = 0. *) (* move=> IHo; pose a := '[u, v] / '[v]; pose u1 := u - a *: v. *) (* have ou: '[u1, v] = 0. *) (* by rewrite cfdotBl cfdotZl divfK ?cfnorm_eq0 ?subrr. *) (* rewrite (canRL (subrK _) (erefl u1)) rpredDr ?rpredZ ?memv_line //. *) (* rewrite cfdotDl ou add0r cfdotZl normrM (ger0_norm (cfnorm_ge0 _)). *) (* rewrite exprMn mulrA -cfnormZ cfnormDd; last by rewrite cfdotZr ou mulr0. *) (* by have:= IHo _ ou; rewrite mulrDl -lerif_subLR subrr ou normCK mul0r. *) (* rewrite ou normCK mul0r; split; first by rewrite mulr_ge0 ?cfnorm_ge0. *) (* rewrite eq_sym mulf_eq0 orbC cfnorm_eq0 (negPf nz_v) /=. *) (* apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite cfdotZr ou mulr0. *) (* by rewrite cfnorm_eq0 => /eqP->; apply: rpred0. *) (* Qed. *) End Sesquilinear. Notation "eps_theta .-sesqui" := (sesqui _ eps_theta) : ring_scope. Notation symmetric_form := (false, [rmorphism of idfun]).-sesqui. Notation skew := (true, [rmorphism of idfun]).-sesqui. Notation hermitian := (false, @conjC _).-sesqui. (* Section ClassificationForm. *) (* Variables (F : fieldType) (L : fieldExtType) (theat : 'Aut()) *) (* Notation "''[' u , v ]_ M" := (form M%R u%R v%R) : ring_scope. *) (* Notation "''[' u ]_ M" := (form M%R u%R u%R) : ring_scope. *) (* Hypothesis (thetaK : involutive theta). *) (* Lemma sesqui_test M : (forall u v, '[v, u]_M = 0 -> '[u, v]_M = 0) -> *) (* {eps | eps^+2 = 1 & M \is (eps,theta).-sesqui}. *) (* Proof. *) (* pose *) (* [/\ forall u, '[u] = 0, theta =1 id & eps = -1] *) (* \/ ((exists u, '[u] != 0) /\ (eps = 1)). *) (* Proof. *) (* move=> M_neq0 form_eq0. *) (* have [] := boolP [forall i : 'I_n, '['e_i] == 0]; last first. *) (* rewrite negb_forall => /existsP [i ei_neq0]. *) (* right; split; first by exists ('e_i). *) (* apply/eqP; *) (* contraT *) (* suff [f_eq0|] : (forall u, '[u] = 0) \/ (exists u, '[u] != 0). *) (* left; split=> //. *) (* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *) (* suff /eqP : eps ^+ 2 = 1. *) (* rewrite -subr_eq0 subr_sqr_1 mulf_eq0. *) (* move => /orP[]; rewrite addr_eq0 ?opprK=> /eqP eps_eq. *) (* right; split=> //. *) (* have [] := boolP [forall i : 'I_n, '['e_i] == 0]. *) (* have := sesquiC u u. *) (* rewrite !linearZ /= -[eps *: _ *m _]/(mulmxr _ _) linearZ /= mxE; congr (_ * _). *) (* have : u = map_mx theta (map_mx theta u). *) (* apply/rowP=> i; rewrite !mxE. *) (* rewrite -[in LHS]mulmxA -map_mxM. *) (* rewrite *) (* !mxE rmorph_sum; apply: eq_bigr => /= i _; rewrite !mxE. *) (* rewrite !rmorphM thetaK rmorph_sum. *) (* Hypothesis (M_sesqui : M \is (eps, theta).-sesqui). *) (* rewrite -[a *: u *m _]/(mulmxr _ _). *) (* rewrite linearZ. *) (* Variables (R : fieldType) (n : nat). *) (* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *) (* Lemma normal_sym k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : *) (* A _|_ B = B _|_ A. *) (* Proof. *) (* rewrite !(sameP sub_kermxP eqP) -{1}[A]trmxK -trmx_mul. *) (* by rewrite -{1}trmx0 (inj_eq (@trmx_inj _ _ _)). *) (* Qed. *) (* Lemma normalNm k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : (- A) _|_ B = A _|_ B. *) (* Proof. by rewrite eqmx_opp. Qed. *) (* Lemma normalmN k m (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) : A _|_ (- B) = A _|_ B. *) (* Proof. by rewrite ![A _|_ _]normal_sym normalNm. Qed. *) (* Lemma normalDm k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *) (* (A + B _|_ C) = (A _|_ C) && (B _|_ C). *) (* Proof. by rewrite addsmxE !(sameP sub_kermxP eqP) mul_col_mx col_mx_eq0. Qed. *) (* Lemma normalmD k m p (A : 'M[R]_(k,n)) (B : 'M[R]_(m,n)) (C : 'M[R]_(p,n)) : *) (* (A _|_ B + C) = (A _|_ B) && (A _|_ C). *) (* Proof. by rewrite ![A _|_ _]normal_sym normalDm. Qed. *) (* Definition dot (u v : 'rV[R]_n) : R := (u *m v^T) 0 0. *) (* Notation "''[' u , v ]" := (dot u v) : ring_scope. *) (* Notation "''[' u ]" := '[u, u]%MS : ring_scope. *) (* Lemma dotmulE (u v : 'rV[R]_n) : '[u, v] = \sum_k u``_k * v``_k. *) (* Proof. by rewrite [LHS]mxE; apply: eq_bigr=> i; rewrite mxE. Qed. *) (* Lemma normalvv (u v : 'rV[R]_n) : (u _|_ v) = ('[u, v] == 0). *) (* Proof. by rewrite (sameP sub_kermxP eqP) [_ *m _^T]mx11_scalar fmorph_eq0. Qed. *) (* End Normal. *) (* Local Notation "''[' u , v ]" := (form u v) : ring_scope. *) (* Local Notation "''[' u ]" := '[u%R, u%R] : ring_scope. *) (* Local Notation "A _|_ B" := (A%MS <= kermx B%MS^T)%MS. *)