Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Subbicategory | |
Author: Eugene W. Stark <stark@cs.stonybrook.edu>, 2019 | |
Maintainer: Eugene W. Stark <stark@cs.stonybrook.edu> | |
*) | |
section "Sub-Bicategories" | |
text \<open> | |
In this section we give a construction of a sub-bicategory in terms of a predicate | |
on the arrows of an ambient bicategory that has certain closure properties with respect | |
to that bicategory. While the construction given here is likely to be of general use, | |
it is not the most general sub-bicategory construction that one could imagine, | |
because it requires that the sub-bicategory actually contain the unit and associativity | |
isomorphisms of the ambient bicategory. Our main motivation for including this construction | |
here is to apply it to exploit the fact that the sub-bicategory of endo-arrows of a fixed | |
object is a monoidal category, which will enable us to transfer to bicategories a result | |
about unit isomorphisms in monoidal categories. | |
\<close> | |
theory Subbicategory | |
imports Bicategory | |
begin | |
subsection "Construction" | |
locale subbicategory = | |
B: bicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B + | |
subcategory V Arr | |
for V :: "'a comp" (infixr "\<cdot>\<^sub>B" 55) | |
and H :: "'a comp" (infixr "\<star>\<^sub>B" 55) | |
and \<a>\<^sub>B :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>\<^sub>B[_, _, _]") | |
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]") | |
and src\<^sub>B :: "'a \<Rightarrow> 'a" | |
and trg\<^sub>B :: "'a \<Rightarrow> 'a" | |
and Arr :: "'a \<Rightarrow> bool" + | |
assumes src_closed: "Arr f \<Longrightarrow> Arr (src\<^sub>B f)" | |
and trg_closed: "Arr f \<Longrightarrow> Arr (trg\<^sub>B f)" | |
and hcomp_closed: "\<lbrakk> Arr f; Arr g; trg\<^sub>B f = src\<^sub>B g \<rbrakk> \<Longrightarrow> Arr (g \<star>\<^sub>B f)" | |
and assoc_closed: "\<lbrakk> Arr f \<and> B.ide f; Arr g \<and> B.ide g; Arr h \<and> B.ide h; | |
src\<^sub>B f = trg\<^sub>B g; src\<^sub>B g = trg\<^sub>B h \<rbrakk> \<Longrightarrow> Arr (\<a>\<^sub>B f g h)" | |
and assoc'_closed: "\<lbrakk> Arr f \<and> B.ide f; Arr g \<and> B.ide g; Arr h \<and> B.ide h; | |
src\<^sub>B f = trg\<^sub>B g; src\<^sub>B g = trg\<^sub>B h \<rbrakk> \<Longrightarrow> Arr (B.inv (\<a>\<^sub>B f g h))" | |
and lunit_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.\<ll> f)" | |
and lunit'_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.inv (B.\<ll> f))" | |
and runit_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.\<rr> f)" | |
and runit'_closed: "\<lbrakk> Arr f; B.ide f \<rbrakk> \<Longrightarrow> Arr (B.inv (B.\<rr> f))" | |
begin | |
notation B.in_hom ("\<guillemotleft>_ : _ \<Rightarrow>\<^sub>B _\<guillemotright>") | |
notation comp (infixr "\<cdot>" 55) | |
definition hcomp (infixr "\<star>" 53) | |
where "g \<star> f = (if arr f \<and> arr g \<and> trg\<^sub>B f = src\<^sub>B g then g \<star>\<^sub>B f else null)" | |
definition src | |
where "src \<mu> = (if arr \<mu> then src\<^sub>B \<mu> else null)" | |
definition trg | |
where "trg \<mu> = (if arr \<mu> then trg\<^sub>B \<mu> else null)" | |
interpretation src: endofunctor \<open>(\<cdot>)\<close> src | |
using src_def null_char inclusion arr_char src_closed trg_closed dom_closed cod_closed | |
dom_simp cod_simp | |
apply unfold_locales | |
apply auto[4] | |
by (metis B.src.as_nat_trans.preserves_comp_2 comp_char seq_char) | |
interpretation trg: endofunctor \<open>(\<cdot>)\<close> trg | |
using trg_def null_char inclusion arr_char src_closed trg_closed dom_closed cod_closed | |
dom_simp cod_simp | |
apply unfold_locales | |
apply auto[4] | |
by (metis B.trg.as_nat_trans.preserves_comp_2 comp_char seq_char) | |
interpretation horizontal_homs \<open>(\<cdot>)\<close> src trg | |
using src_def trg_def src.preserves_arr trg.preserves_arr null_char ide_char arr_char | |
inclusion | |
by (unfold_locales, simp_all) | |
interpretation "functor" VV.comp \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> | |
using hcomp_def VV.arr_char src_def trg_def arr_char hcomp_closed dom_char cod_char | |
VV.dom_char VV.cod_char | |
apply unfold_locales | |
apply auto[2] | |
proof - | |
fix f | |
assume f: "VV.arr f" | |
show "dom (fst f \<star> snd f) = fst (VV.dom f) \<star> snd (VV.dom f)" | |
proof - | |
have "dom (fst f \<star> snd f) = B.dom (fst f) \<star>\<^sub>B B.dom (snd f)" | |
proof - | |
have "dom (fst f \<star> snd f) = B.dom (fst f \<star> snd f)" | |
using f dom_char | |
by (simp add: arr_char hcomp_closed hcomp_def) | |
also have "... = B.dom (fst f) \<star>\<^sub>B B.dom (snd f)" | |
using f | |
by (metis (no_types, lifting) B.hcomp_simps(3) B.hseqI' VV.arrE arrE hcomp_def | |
inclusion src_def trg_def) | |
finally show ?thesis by blast | |
qed | |
also have "... = fst (VV.dom f) \<star> snd (VV.dom f)" | |
using f VV.arr_char VV.dom_char arr_char hcomp_def B.seq_if_composable dom_closed | |
apply simp | |
by (metis (no_types, lifting) dom_char) | |
finally show ?thesis by simp | |
qed | |
show "cod (fst f \<star> snd f) = fst (VV.cod f) \<star> snd (VV.cod f)" | |
proof - | |
have "cod (fst f \<star> snd f) = B.cod (fst f) \<star>\<^sub>B B.cod (snd f)" | |
using f VV.arr_char arr_char cod_char hcomp_def src_def trg_def | |
src_closed trg_closed hcomp_closed inclusion B.hseq_char arrE | |
by auto | |
also have "... = fst (VV.cod f) \<star> snd (VV.cod f)" | |
using f VV.arr_char VV.cod_char arr_char hcomp_def B.seq_if_composable cod_closed | |
apply simp | |
by (metis (no_types, lifting) cod_char) | |
finally show ?thesis by simp | |
qed | |
next | |
fix f g | |
assume fg: "VV.seq g f" | |
show "fst (VV.comp g f) \<star> snd (VV.comp g f) = (fst g \<star> snd g) \<cdot> (fst f \<star> snd f)" | |
proof - | |
have "fst (VV.comp g f) \<star> snd (VV.comp g f) = fst g \<cdot> fst f \<star> snd g \<cdot> snd f" | |
using fg VV.seq_char VV.comp_char VxV.comp_char VxV.not_Arr_Null | |
by (metis (no_types, lifting) VxV.seqE prod.sel(1) prod.sel(2)) | |
also have "... = (fst g \<cdot>\<^sub>B fst f) \<star>\<^sub>B (snd g \<cdot>\<^sub>B snd f)" | |
using fg comp_char hcomp_def VV.seq_char inclusion arr_char seq_char B.hseq_char | |
by (metis (no_types, lifting) B.hseq_char' VxV.seq_char null_char) | |
also have 1: "... = (fst g \<star>\<^sub>B snd g) \<cdot>\<^sub>B (fst f \<star>\<^sub>B snd f)" | |
proof - | |
have "src\<^sub>B (fst g) = trg\<^sub>B (snd g)" | |
by (metis (no_types, lifting) VV.arrE VV.seq_char fg src_def trg_def) | |
thus ?thesis | |
using fg VV.seq_char VV.arr_char arr_char seq_char inclusion B.interchange | |
by (meson VxV.seqE) | |
qed | |
also have "... = (fst g \<star> snd g) \<cdot> (fst f \<star> snd f)" | |
using fg comp_char hcomp_def VV.seq_char VV.arr_char arr_char seq_char inclusion | |
B.hseq_char' hcomp_closed src_def trg_def | |
by (metis (no_types, lifting) 1) | |
finally show ?thesis by auto | |
qed | |
qed | |
interpretation horizontal_composition \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> src trg | |
using arr_char src_def trg_def src_closed trg_closed | |
apply (unfold_locales) | |
using hcomp_def inclusion not_arr_null by auto | |
abbreviation \<a> | |
where "\<a> \<mu> \<nu> \<tau> \<equiv> if VVV.arr (\<mu>, \<nu>, \<tau>) then \<a>\<^sub>B \<mu> \<nu> \<tau> else null" | |
abbreviation (input) \<alpha>\<^sub>S\<^sub>B | |
where "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> \<equiv> \<a> (fst \<mu>\<nu>\<tau>) (fst (snd \<mu>\<nu>\<tau>)) (snd (snd \<mu>\<nu>\<tau>))" | |
lemma assoc_closed': | |
assumes "VVV.arr \<mu>\<nu>\<tau>" | |
shows "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>)" | |
proof - | |
have 1: "B.VVV.arr \<mu>\<nu>\<tau>" | |
using assms VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char arr_char | |
src_def trg_def inclusion | |
by auto | |
show "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>)" | |
proof - | |
have "Arr (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = | |
Arr ((fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)) \<cdot>\<^sub>B \<alpha>\<^sub>S\<^sub>B (B.VVV.dom \<mu>\<nu>\<tau>))" | |
using assms 1 B.\<alpha>_def B.assoc_is_natural_1 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"] | |
VV.arr_char VVV.arr_char B.VVV.arr_char B.VV.arr_char B.VVV.dom_char B.VV.dom_char | |
apply simp | |
by (metis (no_types, lifting) arr_char dom_char dom_closed src.preserves_dom | |
trg.preserves_dom) | |
also have "..." | |
proof (intro comp_closed) | |
show "Arr (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>))" | |
using assms 1 B.VVV.arr_char B.VV.arr_char hcomp_closed | |
by (metis (no_types, lifting) B.H.preserves_reflects_arr B.trg_hcomp | |
VV.arr_char VVV.arrE arr_char) | |
show "B.cod (\<a> (fst (B.VVV.dom \<mu>\<nu>\<tau>)) (fst (snd (B.VVV.dom \<mu>\<nu>\<tau>))) | |
(snd (snd (B.VVV.dom \<mu>\<nu>\<tau>)))) = | |
B.dom (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>))" | |
using assms 1 VVV.arr_char VV.arr_char B.VxVxV.dom_char | |
B.VVV.dom_simp B.VVV.cod_simp | |
apply simp | |
by (metis (no_types, lifting) B.VV.arr_char B.VVV.arrE B.\<alpha>.preserves_reflects_arr | |
B.assoc_is_natural_1 B.seqE arr_dom dom_char src_dom trg_dom) | |
show "Arr (\<a> (fst (B.VVV.dom \<mu>\<nu>\<tau>)) (fst (snd (B.VVV.dom \<mu>\<nu>\<tau>))) | |
(snd (snd (B.VVV.dom \<mu>\<nu>\<tau>))))" | |
proof - | |
have "VVV.arr (B.VVV.dom \<mu>\<nu>\<tau>)" | |
using 1 B.VVV.dom_char B.VVV.arr_char B.VV.arr_char VVV.arr_char VV.arr_char | |
apply simp | |
by (metis (no_types, lifting) VVV.arrE arr_dom assms dom_simp src_dom trg_dom) | |
moreover have "Arr (\<a>\<^sub>B (B.dom (fst \<mu>\<nu>\<tau>)) (B.dom (fst (snd \<mu>\<nu>\<tau>))) | |
(B.dom (snd (snd \<mu>\<nu>\<tau>))))" | |
proof - | |
have "B.VVV.ide (B.VVV.dom \<mu>\<nu>\<tau>)" | |
using 1 B.VVV.ide_dom by blast | |
thus ?thesis | |
using assms B.\<alpha>_def B.VVV.arr_char B.VV.arr_char B.VVV.ide_char B.VV.ide_char | |
dom_closed assoc_closed | |
by (metis (no_types, lifting) "1" B.ide_dom B.src_dom B.trg_dom VV.arr_char | |
VVV.arrE arr_char) | |
qed | |
ultimately show ?thesis | |
using 1 B.VVV.ide_dom assoc_closed B.VVV.dom_char | |
apply simp | |
by (metis (no_types, lifting) B.VV.arr_char B.VVV.arrE B.VVV.inclusion | |
B.VxV.dom_char B.VxVxV.arrE B.VxVxV.dom_char prod.sel(1) prod.sel(2)) | |
qed | |
qed | |
finally show ?thesis by blast | |
qed | |
qed | |
lemma lunit_closed': | |
assumes "Arr f" | |
shows "Arr (B.\<ll> f)" | |
proof - | |
have 1: "arr f \<and> arr (B.\<ll> (B.dom f))" | |
using assms arr_char lunit_closed dom_closed B.ide_dom inclusion by simp | |
moreover have "B.dom f = B.cod (B.\<ll> (B.dom f))" | |
using 1 arr_char B.\<ll>.preserves_cod inclusion by simp | |
moreover have "B.\<ll> f = f \<cdot> B.\<ll> (B.dom f)" | |
using assms 1 B.\<ll>.is_natural_1 inclusion comp_char arr_char by simp | |
ultimately show ?thesis | |
using arr_char comp_closed cod_char seqI dom_simp by auto | |
qed | |
lemma runit_closed': | |
assumes "Arr f" | |
shows "Arr (B.\<rr> f)" | |
proof - | |
have 1: "arr f \<and> arr (B.\<rr> (B.dom f))" | |
using assms arr_char runit_closed dom_closed B.ide_dom inclusion | |
by simp | |
moreover have "B.dom f = B.cod (B.\<rr> (B.dom f))" | |
using 1 arr_char B.\<ll>.preserves_cod inclusion by simp | |
moreover have "B.\<rr> f = f \<cdot> B.\<rr> (B.dom f)" | |
using assms 1 B.\<rr>.is_natural_1 inclusion comp_char arr_char by simp | |
ultimately show ?thesis | |
using arr_char comp_closed cod_char seqI dom_simp by auto | |
qed | |
interpretation natural_isomorphism VVV.comp \<open>(\<cdot>)\<close> HoHV HoVH \<alpha>\<^sub>S\<^sub>B | |
proof | |
fix \<mu>\<nu>\<tau> | |
show "\<not> VVV.arr \<mu>\<nu>\<tau> \<Longrightarrow> \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> = null" | |
by simp | |
assume \<mu>\<nu>\<tau>: "VVV.arr \<mu>\<nu>\<tau>" | |
have 1: "B.VVV.arr \<mu>\<nu>\<tau>" | |
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char arr_char | |
src_def trg_def inclusion | |
by auto | |
show "dom (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = HoHV (VVV.dom \<mu>\<nu>\<tau>)" | |
proof - | |
have "dom (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = B.HoHV (B.VVV.dom \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> 1 arr_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char | |
B.\<alpha>_def assoc_closed' dom_simp | |
by simp | |
also have "... = HoHV (VVV.dom \<mu>\<nu>\<tau>)" | |
proof - | |
have "HoHV (VVV.dom \<mu>\<nu>\<tau>) = HoHV (VxVxV.dom \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> VVV.dom_char VV.arr_char src_def trg_def VVV.arr_char by auto | |
also have "... = B.HoHV (B.VVV.dom \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> VVV.dom_char VVV.arr_char VV.arr_char src_def trg_def | |
HoHV_def B.HoHV_def arr_char B.VVV.arr_char B.VVV.dom_char B.VV.arr_char | |
dom_closed hcomp_closed hcomp_def inclusion dom_simp | |
by auto | |
finally show ?thesis by simp | |
qed | |
finally show ?thesis by simp | |
qed | |
show "cod (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = HoVH (VVV.cod \<mu>\<nu>\<tau>)" | |
proof - | |
have "cod (\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>) = B.HoVH (B.VVV.cod \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> 1 arr_char VVV.arr_char VV.arr_char B.VVV.arr_char B.VV.arr_char | |
B.\<alpha>_def assoc_closed' cod_simp | |
by simp | |
also have "... = HoVH (VVV.cod \<mu>\<nu>\<tau>)" | |
proof - | |
have "HoVH (VVV.cod \<mu>\<nu>\<tau>) = HoVH (VxVxV.cod \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> VVV.cod_char VV.arr_char src_def trg_def VVV.arr_char by auto | |
also have "... = B.HoVH (B.VVV.cod \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> VVV.cod_char VV.arr_char src_def trg_def VVV.arr_char | |
HoVH_def B.HoVH_def arr_char B.VVV.arr_char B.VVV.cod_char B.VV.arr_char | |
cod_closed hcomp_closed hcomp_def inclusion cod_simp | |
by simp | |
finally show ?thesis by simp | |
qed | |
finally show ?thesis by simp | |
qed | |
have 3: "Arr (fst \<mu>\<nu>\<tau>) \<and> Arr (fst (snd \<mu>\<nu>\<tau>)) \<and> Arr (snd (snd \<mu>\<nu>\<tau>)) \<and> | |
src\<^sub>B (fst \<mu>\<nu>\<tau>) = trg\<^sub>B (fst (snd \<mu>\<nu>\<tau>)) \<and> | |
src\<^sub>B (fst (snd \<mu>\<nu>\<tau>)) = trg\<^sub>B (snd (snd \<mu>\<nu>\<tau>))" | |
using \<mu>\<nu>\<tau> VVV.arr_char VV.arr_char src_def trg_def arr_char by auto | |
show "HoVH \<mu>\<nu>\<tau> \<cdot> \<alpha>\<^sub>S\<^sub>B (VVV.dom \<mu>\<nu>\<tau>) = \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>" | |
proof - | |
have "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> = (fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)) \<cdot>\<^sub>B | |
\<a>\<^sub>B (B.dom (fst \<mu>\<nu>\<tau>)) (B.dom (fst (snd \<mu>\<nu>\<tau>))) (B.dom (snd (snd \<mu>\<nu>\<tau>)))" | |
using 3 inclusion B.assoc_is_natural_1 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"] | |
by (simp add: \<mu>\<nu>\<tau>) | |
also have "... = (fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>) \<star> snd (snd \<mu>\<nu>\<tau>)) \<cdot> | |
\<a>\<^sub>B (dom (fst \<mu>\<nu>\<tau>)) (dom (fst (snd \<mu>\<nu>\<tau>))) (dom (snd (snd \<mu>\<nu>\<tau>)))" | |
using 1 3 \<mu>\<nu>\<tau> hcomp_closed assoc_closed dom_closed hcomp_def comp_def inclusion | |
comp_char dom_char VVV.arr_char VV.arr_char | |
apply simp | |
using B.hcomp_simps(2-3) arr_char by presburger | |
also have "... = HoVH \<mu>\<nu>\<tau> \<cdot> \<alpha>\<^sub>S\<^sub>B (VVV.dom \<mu>\<nu>\<tau>)" | |
using \<mu>\<nu>\<tau> B.\<alpha>_def HoVH_def VVV.dom_char VV.dom_char VxVxV.dom_char | |
apply simp | |
by (metis (no_types, lifting) VV.arr_char VVV.arrE VVV.arr_dom VxV.dom_char | |
dom_simp) | |
finally show ?thesis by argo | |
qed | |
show "\<alpha>\<^sub>S\<^sub>B (VVV.cod \<mu>\<nu>\<tau>) \<cdot> HoHV \<mu>\<nu>\<tau> = \<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau>" | |
proof - | |
have "\<alpha>\<^sub>S\<^sub>B \<mu>\<nu>\<tau> = | |
\<a>\<^sub>B (B.cod (fst \<mu>\<nu>\<tau>)) (B.cod (fst (snd \<mu>\<nu>\<tau>))) (B.cod (snd (snd \<mu>\<nu>\<tau>))) \<cdot>\<^sub>B | |
(fst \<mu>\<nu>\<tau> \<star>\<^sub>B fst (snd \<mu>\<nu>\<tau>)) \<star>\<^sub>B snd (snd \<mu>\<nu>\<tau>)" | |
using 3 inclusion B.assoc_is_natural_2 [of "fst \<mu>\<nu>\<tau>" "fst (snd \<mu>\<nu>\<tau>)" "snd (snd \<mu>\<nu>\<tau>)"] | |
by (simp add: \<mu>\<nu>\<tau>) | |
also have "... = \<a>\<^sub>B (cod (fst \<mu>\<nu>\<tau>)) (cod (fst (snd \<mu>\<nu>\<tau>))) (cod (snd (snd \<mu>\<nu>\<tau>))) \<cdot> | |
((fst \<mu>\<nu>\<tau> \<star> fst (snd \<mu>\<nu>\<tau>)) \<star> snd (snd \<mu>\<nu>\<tau>))" | |
using 1 3 \<mu>\<nu>\<tau> hcomp_closed assoc_closed cod_closed hcomp_def comp_def inclusion | |
comp_char cod_char VVV.arr_char VV.arr_char | |
by auto | |
also have "... = \<alpha>\<^sub>S\<^sub>B (VVV.cod \<mu>\<nu>\<tau>) \<cdot> HoHV \<mu>\<nu>\<tau>" | |
using \<mu>\<nu>\<tau> B.\<alpha>_def HoHV_def VVV.cod_char VV.cod_char VxVxV.cod_char | |
VVV.arr_char VV.arr_char arr_cod src_cod trg_cod | |
by simp | |
finally show ?thesis by argo | |
qed | |
next | |
fix fgh | |
assume fgh: "VVV.ide fgh" | |
show "iso (\<alpha>\<^sub>S\<^sub>B fgh)" | |
proof - | |
have 1: "B.arr (fst (snd fgh)) \<and> B.arr (snd (snd fgh)) \<and> | |
src\<^sub>B (fst (snd fgh)) = trg\<^sub>B (snd (snd fgh)) \<and> | |
src\<^sub>B (fst fgh) = trg\<^sub>B (fst (snd fgh))" | |
using fgh VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def | |
arr_char inclusion | |
by auto | |
have 2: "B.ide (fst fgh) \<and> B.ide (fst (snd fgh)) \<and> B.ide (snd (snd fgh))" | |
using fgh VVV.ide_char ide_char by blast | |
have "\<alpha>\<^sub>S\<^sub>B fgh = \<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh))" | |
using fgh B.\<alpha>_def by simp | |
moreover have "B.VVV.ide fgh" | |
using fgh 1 2 VVV.ide_char B.VVV.ide_char VVV.arr_char B.VVV.arr_char | |
src_def trg_def inclusion arr_char B.VV.arr_char | |
by simp | |
moreover have "Arr (\<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh)))" | |
using fgh 1 VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def | |
arr_char assoc_closed' B.\<alpha>_def | |
by simp | |
moreover have "Arr (B.inv (\<a>\<^sub>B (fst fgh) (fst (snd fgh)) (snd (snd fgh))))" | |
using fgh 1 VVV.ide_char VVV.arr_char VV.arr_char src_def trg_def | |
arr_char assoc'_closed | |
by (simp add: VVV.arr_char "2" B.VVV.ide_char calculation(2)) | |
ultimately show ?thesis | |
using fgh iso_char B.\<alpha>.components_are_iso by auto | |
qed | |
qed | |
interpretation L: endofunctor \<open>(\<cdot>)\<close> L | |
using endofunctor_L by auto | |
interpretation R: endofunctor \<open>(\<cdot>)\<close> R | |
using endofunctor_R by auto | |
interpretation L: faithful_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> L | |
proof | |
fix f f' | |
assume par: "par f f'" | |
assume eq: "L f = L f'" | |
have "B.par f f'" | |
using par inclusion arr_char dom_simp cod_simp by fastforce | |
moreover have "B.L f = B.L f'" | |
proof - | |
have "\<forall>a. Arr a \<longrightarrow> B.arr a" | |
by (simp add: inclusion) | |
moreover have 1: "\<forall>a. arr a \<longrightarrow> (if arr a then hseq (trg a) a else arr null)" | |
using L.preserves_arr by presburger | |
moreover have "Arr f \<and> Arr (trg f) \<and> trg\<^sub>B f = src\<^sub>B (trg f)" | |
by (simp add: \<open>B.par f f'\<close> arrE par trg_closed trg_def) | |
ultimately show ?thesis | |
by (metis \<open>B.par f f'\<close> eq hcomp_def hseq_char' par trg_def) | |
qed | |
ultimately show "f = f'" | |
using B.L.is_faithful by blast | |
qed | |
interpretation L: full_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> L | |
proof | |
fix f f' \<nu> | |
assume f: "ide f" and f': "ide f'" and \<nu>: "\<guillemotleft>\<nu> : L f \<Rightarrow> L f'\<guillemotright>" | |
have 1: "L f = trg\<^sub>B f \<star>\<^sub>B f \<and> L f' = trg\<^sub>B f' \<star>\<^sub>B f'" | |
using f f' hcomp_def trg_def arr_char ide_char trg_closed by simp | |
have 2: "\<guillemotleft>\<nu> : trg\<^sub>B f \<star>\<^sub>B f \<Rightarrow>\<^sub>B trg\<^sub>B f' \<star>\<^sub>B f'\<guillemotright>" | |
using 1 f f' \<nu> hcomp_def trg_def src_def inclusion | |
dom_char cod_char hseq_char' arr_char ide_char trg_closed null_char | |
by (simp add: arr_char in_hom_char) | |
show "\<exists>\<mu>. \<guillemotleft>\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> L \<mu> = \<nu>" | |
proof - | |
let ?\<mu> = "B.\<ll> f' \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B B.inv (B.\<ll> f)" | |
have \<mu>: "\<guillemotleft>?\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> \<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>" | |
proof - | |
have "\<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>" | |
using f f' \<nu> 2 B.\<ll>_ide_simp lunit'_closed lunit_closed' ide_char by auto | |
thus ?thesis | |
using f f' \<nu> in_hom_char arr_char comp_closed ide_char | |
lunit'_closed lunit_closed | |
by (metis (no_types, lifting) B.arrI B.seqE in_homE) | |
qed | |
have \<mu>_eq: "?\<mu> = B.\<ll> f' \<cdot> \<nu> \<cdot> B.inv (B.\<ll> f)" | |
proof - | |
have "?\<mu> = B.\<ll> f' \<cdot> \<nu> \<cdot>\<^sub>B B.inv (B.\<ll> f)" | |
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char | |
lunit'_closed lunit_closed | |
by (metis (no_types, lifting) B.seqE in_homE) | |
also have "... = B.\<ll> f' \<cdot> \<nu> \<cdot> B.inv (B.\<ll> f)" | |
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char | |
lunit'_closed lunit_closed | |
by (metis (no_types, lifting) B.seqE in_homE) | |
finally show ?thesis by simp | |
qed | |
have "L ?\<mu> = \<nu>" | |
proof - | |
have "L ?\<mu> = trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>" | |
using \<mu> \<mu>_eq hcomp_def trg_def inclusion arr_char trg_closed by auto | |
also have "... = (trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) \<cdot>\<^sub>B (B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f)" | |
proof - | |
have "B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f = trg\<^sub>B f \<star>\<^sub>B f" | |
using f ide_char B.comp_inv_arr B.inv_is_inverse by auto | |
moreover have "B.dom (trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) = trg\<^sub>B f \<star>\<^sub>B f" | |
proof - | |
have "B.dom (trg\<^sub>B ?\<mu>) = trg\<^sub>B f" | |
using f \<mu> B.vconn_implies_hpar(2) by force | |
moreover have "B.dom ?\<mu> = f" | |
using \<mu> by blast | |
ultimately show ?thesis | |
using B.hcomp_simps [of "trg\<^sub>B ?\<mu>" ?\<mu>] | |
by (metis (no_types, lifting) B.hseqI' B.ideD(1) B.src_trg | |
B.trg.preserves_reflects_arr B.trg_dom f ide_char) | |
qed | |
ultimately show ?thesis | |
using \<mu> \<mu>_eq B.comp_arr_dom in_hom_char by auto | |
qed | |
also have "... = ((trg\<^sub>B ?\<mu> \<star>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.inv (B.\<ll> f)) \<cdot>\<^sub>B B.\<ll> f" | |
using B.comp_assoc by simp | |
also have "... = (B.inv (B.\<ll> f') \<cdot>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.\<ll> f" | |
using \<mu> \<mu>_eq B.\<ll>'.naturality [of ?\<mu>] by auto | |
also have "... = (B.inv (B.\<ll> f') \<cdot>\<^sub>B B.\<ll> f') \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B (B.inv (B.\<ll> f) \<cdot>\<^sub>B B.\<ll> f)" | |
using \<mu> \<mu>_eq arr_char arrI comp_simp B.comp_assoc by metis | |
also have "... = \<nu>" | |
using f f' \<nu> 2 B.comp_arr_dom B.comp_cod_arr ide_char | |
B.\<ll>.components_are_iso B.\<ll>_ide_simp B.comp_inv_arr' | |
by auto | |
finally show ?thesis by blast | |
qed | |
thus ?thesis | |
using \<mu> by auto | |
qed | |
qed | |
interpretation R: faithful_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> R | |
proof | |
fix f f' | |
assume par: "par f f'" | |
assume eq: "R f = R f'" | |
have "B.par f f'" | |
using par inclusion arr_char dom_simp cod_simp by fastforce | |
moreover have "B.R f = B.R f'" | |
proof - | |
have "\<forall>a. Arr a \<longrightarrow> B.arr a" | |
by (simp add: inclusion) | |
moreover have 1: "\<forall>a. arr a \<longrightarrow> (if arr a then hseq a (src a) else arr null)" | |
using R.preserves_arr by presburger | |
moreover have "arr f \<and> arr (src f) \<and> trg\<^sub>B (src f) = src\<^sub>B f" | |
by (meson 1 hcomp_def hseq_char' par) | |
ultimately show ?thesis | |
by (metis \<open>B.par f f'\<close> eq hcomp_def hseq_char' src_def) | |
qed | |
ultimately show "f = f'" | |
using B.R.is_faithful by blast | |
qed | |
interpretation R: full_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> R | |
proof | |
fix f f' \<nu> | |
assume f: "ide f" and f': "ide f'" and \<nu>: "\<guillemotleft>\<nu> : R f \<Rightarrow> R f'\<guillemotright>" | |
have 1: "R f = f \<star>\<^sub>B src\<^sub>B f \<and> R f' = f' \<star>\<^sub>B src\<^sub>B f'" | |
using f f' hcomp_def src_def arr_char ide_char src_closed by simp | |
have 2: "\<guillemotleft>\<nu> : f \<star>\<^sub>B src\<^sub>B f \<Rightarrow>\<^sub>B f' \<star>\<^sub>B src\<^sub>B f'\<guillemotright>" | |
using 1 f f' \<nu> hcomp_def trg_def src_def inclusion | |
dom_char cod_char hseq_char' arr_char ide_char trg_closed null_char | |
by (simp add: arr_char in_hom_char) | |
show "\<exists>\<mu>. \<guillemotleft>\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> R \<mu> = \<nu>" | |
proof - | |
let ?\<mu> = "B.\<rr> f' \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B B.inv (B.\<rr> f)" | |
have \<mu>: "\<guillemotleft>?\<mu> : f \<Rightarrow> f'\<guillemotright> \<and> \<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>" | |
proof - | |
have "\<guillemotleft>?\<mu> : f \<Rightarrow>\<^sub>B f'\<guillemotright>" | |
using f f' \<nu> 2 B.\<rr>_ide_simp runit'_closed runit_closed' ide_char by auto | |
thus ?thesis | |
by (metis (no_types, lifting) B.arrI B.seqE \<nu> arrE arrI comp_closed f f' | |
ide_char in_hom_char runit'_closed runit_closed') | |
qed | |
have \<mu>_eq: "?\<mu> = B.\<rr> f' \<cdot> \<nu> \<cdot> B.inv (B.\<rr> f)" | |
proof - | |
have "?\<mu> = B.\<rr> f' \<cdot> \<nu> \<cdot>\<^sub>B B.inv (B.\<rr> f)" | |
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char | |
runit'_closed runit_closed | |
by (metis (no_types, lifting) B.seqE in_homE) | |
also have "... = B.\<rr> f' \<cdot> \<nu> \<cdot> B.inv (B.\<rr> f)" | |
using f f' \<nu> \<mu> arr_char inclusion comp_char comp_closed ide_char | |
runit'_closed runit_closed | |
by (metis (no_types, lifting) B.arrI B.comp_in_homE in_hom_char) | |
finally show ?thesis by simp | |
qed | |
have "R ?\<mu> = \<nu>" | |
proof - | |
have "R ?\<mu> = ?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>" | |
using \<mu> \<mu>_eq hcomp_def src_def inclusion arr_char src_closed by auto | |
also have "... = (?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) \<cdot>\<^sub>B (B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f)" | |
proof - | |
have "B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f = f \<star>\<^sub>B src\<^sub>B f" | |
using f ide_char B.comp_inv_arr B.inv_is_inverse by auto | |
moreover have "B.dom (?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) = f \<star>\<^sub>B src\<^sub>B f" | |
using f \<mu> \<mu>_eq ide_char arr_char B.src_dom [of ?\<mu>] | |
by (metis (no_types, lifting) B.R.as_nat_trans.preserves_comp_2 B.R.preserves_seq | |
B.dom_src B.hcomp_simps(3) B.in_homE) | |
ultimately show ?thesis | |
using \<mu> \<mu>_eq B.comp_arr_dom in_hom_char by auto | |
qed | |
also have "... = ((?\<mu> \<star>\<^sub>B src\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.inv (B.\<rr> f)) \<cdot>\<^sub>B B.\<rr> f" | |
using B.comp_assoc by simp | |
also have "... = (B.inv (B.\<rr> f') \<cdot>\<^sub>B ?\<mu>) \<cdot>\<^sub>B B.\<rr> f" | |
using \<mu> \<mu>_eq B.\<rr>'.naturality [of ?\<mu>] by auto | |
also have "... = (B.inv (B.\<rr> f') \<cdot>\<^sub>B B.\<rr> f') \<cdot>\<^sub>B \<nu> \<cdot>\<^sub>B (B.inv (B.\<rr> f) \<cdot>\<^sub>B B.\<rr> f)" | |
using \<mu> \<mu>_eq arr_char arrI comp_simp B.comp_assoc by metis | |
also have "... = \<nu>" | |
using f f' \<nu> 2 B.comp_arr_dom B.comp_cod_arr ide_char | |
B.\<ll>.components_are_iso B.\<ll>_ide_simp B.comp_inv_arr' | |
by auto | |
finally show ?thesis by blast | |
qed | |
thus ?thesis | |
using \<mu> by blast | |
qed | |
qed | |
interpretation bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg | |
proof | |
show "\<And>a. obj a \<Longrightarrow> \<guillemotleft>\<i>[a] : a \<star> a \<Rightarrow> a\<guillemotright>" | |
proof (intro in_homI) | |
fix a | |
assume a: "obj a" | |
have 1: "Arr (\<i> a)" | |
using a obj_def src_def trg_def in_hom_char B.unit_in_hom | |
arr_char hcomp_def B.obj_def ide_char objE hcomp_closed | |
by (metis (no_types, lifting) B.\<ll>_ide_simp B.unitor_coincidence(1) inclusion lunit_closed) | |
show 2: "arr \<i>[a]" | |
using 1 arr_char by simp | |
show "dom \<i>[a] = a \<star> a" | |
using a 2 dom_char | |
by (metis (full_types) B.objI_trg B.unit_simps(4) R.preserves_reflects_arr | |
hcomp_def hseq_char' inclusion objE obj_simps(1) | |
subcategory.arrE subcategory_axioms trg_def) | |
show "cod \<i>[a] = a" | |
using a 2 cod_char | |
by (metis B.obj_def' B.unit_simps(5) inclusion objE obj_simps(1) | |
subcategory.arrE subcategory_axioms trg_def) | |
qed | |
show "\<And>a. obj a \<Longrightarrow> iso (\<i> a)" | |
proof - | |
fix a | |
assume a: "obj a" | |
have 1: "trg\<^sub>B a = src\<^sub>B a" | |
using a obj_def src_def trg_def B.obj_def arr_char | |
by (metis horizontal_homs.objE horizontal_homs_axioms) | |
have 2: "Arr (\<i> a)" | |
using a 1 obj_def src_def trg_def in_hom_char B.unit_in_hom | |
arr_char hcomp_def B.obj_def ide_char objE hcomp_closed | |
by (metis (no_types, lifting) B.\<ll>_ide_simp B.unitor_coincidence(1) inclusion lunit_closed) | |
have "iso (B.\<ll> a)" | |
using a 2 obj_def B.iso_unit iso_char arr_char lunit_closed lunit'_closed B.iso_lunit | |
apply simp | |
by (metis (no_types, lifting) B.\<ll>.components_are_iso B.ide_src inclusion src_def) | |
thus "iso (\<i> a)" | |
using a 2 obj_def B.iso_unit iso_char arr_char B.unitor_coincidence | |
apply simp | |
by (metis (no_types, lifting) B.\<ll>_ide_simp B.ide_src B.obj_src inclusion src_def) | |
qed | |
show "\<And>f g h k. \<lbrakk> ide f; ide g; ide h; ide k; | |
src f = trg g; src g = trg h; src h = trg k \<rbrakk> \<Longrightarrow> | |
(f \<star> \<a> g h k) \<cdot> \<a> f (g \<star> h) k \<cdot> (\<a> f g h \<star> k) = | |
\<a> f g (h \<star> k) \<cdot> \<a> (f \<star> g) h k" | |
using B.pentagon VVV.arr_char VV.arr_char hcomp_def assoc_closed arr_char comp_char | |
hcomp_closed comp_closed ide_char inclusion src_def trg_def | |
by simp | |
qed | |
proposition is_bicategory: | |
shows "bicategory (\<cdot>) (\<star>) \<a> \<i> src trg" | |
.. | |
lemma obj_char: | |
shows "obj a \<longleftrightarrow> arr a \<and> B.obj a" | |
proof | |
assume a: "obj a" | |
show "arr a \<and> B.obj a" | |
using a obj_def B.obj_def src_def arr_char inclusion by metis | |
next | |
assume a: "arr a \<and> B.obj a" | |
have "src a = a" | |
using a src_def by auto | |
thus "obj a" | |
using a obj_def by simp | |
qed | |
lemma hcomp_char: | |
shows "hcomp = (\<lambda>f g. if arr f \<and> arr g \<and> src f = trg g then f \<star>\<^sub>B g else null)" | |
using hcomp_def src_def trg_def by metis | |
lemma assoc_simp: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<a> f g h = \<a>\<^sub>B f g h" | |
using assms VVV.arr_char VV.arr_char by auto | |
lemma assoc'_simp: | |
assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" | |
shows "\<a>' f g h = B.\<a>' f g h" | |
proof - | |
have "\<a>' f g h = B.inv (\<a>\<^sub>B f g h)" | |
using assms inv_char by fastforce | |
also have "... = B.\<a>' f g h" | |
using assms ide_char src_def trg_def | |
B.VVV.ide_char B.VVV.arr_char B.VV.arr_char | |
by force | |
finally show ?thesis by blast | |
qed | |
lemma lunit_simp: | |
assumes "ide f" | |
shows "lunit f = B.lunit f" | |
proof - | |
have "B.lunit f = lunit f" | |
proof (intro lunit_eqI) | |
show "ide f" by fact | |
show 1: "\<guillemotleft>B.lunit f : trg f \<star> f \<Rightarrow> f\<guillemotright>" | |
proof | |
show 2: "arr (B.lunit f)" | |
using assms arr_char lunit_closed | |
by (simp add: arr_char B.\<ll>_ide_simp ide_char) | |
show "dom (B.lunit f) = trg f \<star> f" | |
using assms 2 dom_char hcomp_char ide_char src_trg trg.preserves_arr trg_def | |
by auto | |
show "cod (B.lunit f) = f" | |
using assms 2 in_hom_char | |
by (simp add: cod_simp ide_char) | |
qed | |
show "trg f \<star> B.lunit f = (\<i>[trg f] \<star> f) \<cdot> \<a>' (trg f) (trg f) f" | |
proof - | |
have "trg f \<star> B.lunit f = trg\<^sub>B f \<star>\<^sub>B B.lunit f" | |
using assms 1 arr_char hcomp_char | |
by (metis (no_types, lifting) ideD(1) src_trg trg.preserves_reflects_arr | |
trg_def vconn_implies_hpar(2,4)) | |
also have "... = (\<i>[trg f] \<star>\<^sub>B f) \<cdot>\<^sub>B B.\<a>' (trg f) (trg f) f" | |
using assms ide_char B.lunit_char(2) trg_def by simp | |
also have "... = (\<i>[trg f] \<star>\<^sub>B f) \<cdot>\<^sub>B \<a>' (trg f) (trg f) f" | |
using assms assoc'_simp [of "trg f" "trg f" f] by simp | |
also have "... = (\<i>[trg f] \<star> f) \<cdot>\<^sub>B \<a>' (trg f) (trg f) f" | |
using assms hcomp_char by simp | |
also have "... = (\<i>[trg f] \<star> f) \<cdot> \<a>' (trg f) (trg f) f" | |
using assms seq_char [of "\<i>[trg f] \<star> f" "\<a>' (trg f) (trg f) f"] | |
comp_char [of "\<i>[trg f] \<star> f" "\<a>' (trg f) (trg f) f"] | |
by simp | |
finally show ?thesis by blast | |
qed | |
qed | |
thus ?thesis by simp | |
qed | |
lemma lunit'_simp: | |
assumes "ide f" | |
shows "lunit' f = B.lunit' f" | |
using assms inv_char [of "lunit f"] lunit_simp by fastforce | |
lemma runit_simp: | |
assumes "ide f" | |
shows "runit f = B.runit f" | |
proof - | |
have "B.runit f = runit f" | |
proof (intro runit_eqI) | |
show "ide f" by fact | |
show 1: "\<guillemotleft>B.runit f : f \<star> src f \<Rightarrow> f\<guillemotright>" | |
proof | |
show 2: "arr (B.runit f)" | |
using assms arr_char runit_closed | |
by (simp add: arr_char B.\<rr>_ide_simp ide_char) | |
show "dom (B.runit f) = f \<star> src f" | |
using assms 2 dom_char hcomp_char | |
by (metis (no_types, lifting) B.runit_simps(4) ide_char src.preserves_reflects_arr | |
src_def trg_src) | |
show "cod (B.runit f) = f" | |
using assms 2 in_hom_char | |
by (simp add: cod_simp ide_char) | |
qed | |
show "B.runit f \<star> src f = (f \<star> \<i>[src f]) \<cdot> \<a> f (src f) (src f)" | |
proof - | |
have "B.runit f \<star> src f = B.runit f \<star>\<^sub>B src\<^sub>B f" | |
using assms 1 arr_char hcomp_char | |
by (metis (no_types, lifting) ideD(1) src.preserves_reflects_arr src_def | |
trg_src vconn_implies_hpar(1,3)) | |
also have "... = (f \<star>\<^sub>B \<i>[src f]) \<cdot>\<^sub>B \<a>\<^sub>B f (src f) (src f)" | |
using assms ide_char B.runit_char(2) src_def by simp | |
also have "... = (f \<star>\<^sub>B \<i>[src f]) \<cdot>\<^sub>B \<a> f (src f) (src f)" | |
using assms assoc_simp by simp | |
also have "... = (f \<star> \<i>[src f]) \<cdot>\<^sub>B \<a> f (src f) (src f)" | |
using assms 1 hcomp_char by simp | |
also have "... = (f \<star> \<i>[src f]) \<cdot> \<a> f (src f) (src f)" | |
proof - | |
have "B.seq (f \<star> \<i>[src f]) (\<a> f (src f) (src f))" | |
using assms seq_char [of "f \<star> \<i>[src f]" "\<a> f (src f) (src f)"] by simp | |
thus ?thesis | |
using assms comp_char [of "f \<star> \<i>[src f]" "\<a> f (src f) (src f)"] by simp | |
qed | |
finally show ?thesis by blast | |
qed | |
qed | |
thus ?thesis by simp | |
qed | |
lemma runit'_simp: | |
assumes "ide f" | |
shows "runit' f = B.runit' f" | |
using assms inv_char [of "runit f"] runit_simp by fastforce | |
lemma comp_eqI [intro]: | |
assumes "seq f g" and "f = f'" and "g = g'" | |
shows "f \<cdot> g = f' \<cdot>\<^sub>B g'" | |
using assms comp_char ext ext not_arr_null by auto | |
lemma comp_eqI' [intro]: | |
assumes "seq f g" and "f = f'" and "g = g'" | |
shows "f \<cdot>\<^sub>B g = f' \<cdot> g'" | |
using assms comp_char ext ext not_arr_null by auto | |
lemma hcomp_eqI [intro]: | |
assumes "hseq f g" and "f = f'" and "g = g'" | |
shows "f \<star> g = f' \<star>\<^sub>B g'" | |
using assms hcomp_char not_arr_null by auto | |
lemma hcomp_eqI' [intro]: | |
assumes "hseq f g" and "f = f'" and "g = g'" | |
shows "f \<star>\<^sub>B g = f' \<star> g'" | |
using assms hcomp_char not_arr_null by auto | |
lemma arr_compI: | |
assumes "seq f g" | |
shows "arr (f \<cdot>\<^sub>B g)" | |
using assms seq_char dom_char cod_char | |
by (metis (no_types, lifting) comp_simp) | |
lemma arr_hcompI: | |
assumes "hseq f g" | |
shows "arr (f \<star>\<^sub>B g)" | |
using assms hseq_char src_def trg_def hcomp_eqI' by auto | |
end | |
sublocale subbicategory \<subseteq> bicategory \<open>(\<cdot>)\<close> \<open>(\<star>)\<close> \<a> \<i> src trg | |
using is_bicategory by auto | |
subsection "The Sub-bicategory of Endo-arrows of an Object" | |
text \<open> | |
We now consider the sub-bicategory consisting of all arrows having the same | |
object \<open>a\<close> both as their source and their target and we show that the resulting structure | |
is a monoidal category. We actually prove a slightly more general result, | |
in which the unit of the monoidal category is taken to be an arbitrary isomorphism | |
\<open>\<guillemotleft>\<omega> : w \<star>\<^sub>B w \<Rightarrow> w\<guillemotright>\<close> with \<open>w\<close> isomorphic to \<open>a\<close>, rather than the particular choice | |
\<open>\<guillemotleft>\<i>[a] : a \<star>\<^sub>B a \<Rightarrow> a\<guillemotright>\<close> made by the ambient bicategory. | |
\<close> | |
locale subbicategory_at_object = | |
B: bicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B + | |
subbicategory V H \<a>\<^sub>B \<i> src\<^sub>B trg\<^sub>B \<open>\<lambda>\<mu>. B.arr \<mu> \<and> src\<^sub>B \<mu> = a \<and> trg\<^sub>B \<mu> = a\<close> | |
for V :: "'a comp" (infixr "\<cdot>\<^sub>B" 55) | |
and H :: "'a comp" (infixr "\<star>\<^sub>B" 55) | |
and \<a>\<^sub>B :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("\<a>\<^sub>B[_, _, _]") | |
and \<i> :: "'a \<Rightarrow> 'a" ("\<i>[_]") | |
and src\<^sub>B :: "'a \<Rightarrow> 'a" | |
and trg\<^sub>B :: "'a \<Rightarrow> 'a" | |
and a :: "'a" | |
and w :: "'a" | |
and \<omega> :: "'a" + | |
assumes obj_a: "B.obj a" | |
and isomorphic_a_w: "B.isomorphic a w" | |
and \<omega>_in_vhom: "\<guillemotleft>\<omega> : w \<star>\<^sub>B w \<Rightarrow> w\<guillemotright>" | |
and \<omega>_is_iso: "B.iso \<omega>" | |
begin | |
notation hcomp (infixr "\<star>" 53) | |
lemma arr_simps: | |
assumes "arr \<mu>" | |
shows "src \<mu> = a" and "trg \<mu> = a" | |
apply (metis (no_types, lifting) arrE assms src_def) | |
by (metis (no_types, lifting) arrE assms trg_def) | |
lemma \<omega>_simps [simp]: | |
shows "arr \<omega>" | |
and "src \<omega> = a" and "trg \<omega> = a" | |
and "dom \<omega> = w \<star>\<^sub>B w" and "cod \<omega> = w" | |
using isomorphic_a_w \<omega>_in_vhom in_hom_char arr_simps by auto | |
lemma ide_w: | |
shows "B.ide w" | |
using isomorphic_a_w B.isomorphic_def by auto | |
lemma w_simps [simp]: | |
shows "ide w" and "B.ide w" | |
and "src w = a" and "trg w = a" and "src\<^sub>B w = a" and "trg\<^sub>B w = a" | |
and "dom w = w" and "cod w = w" | |
proof - | |
show w: "ide w" | |
using \<omega>_in_vhom ide_cod by blast | |
show "B.ide w" | |
using w ide_char by simp | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : a \<Rightarrow>\<^sub>B w\<guillemotright> \<and> B.iso \<phi>" | |
using isomorphic_a_w B.isomorphic_def by auto | |
show "src\<^sub>B w = a" | |
using obj_a w \<phi> B.src_cod by force | |
show "trg\<^sub>B w = a" | |
using obj_a w \<phi> B.src_cod by force | |
show "src w = a" | |
using \<open>src\<^sub>B w = a\<close> w ide_w src_def by simp | |
show "trg w = a" | |
using \<open>src\<^sub>B w = a\<close> w ide_w trg_def | |
by (simp add: \<open>trg\<^sub>B w = a\<close>) | |
show "dom w = w" | |
using w by simp | |
show "cod w = w" | |
using w by simp | |
qed | |
lemma VxV_arr_eq_VV_arr: | |
shows "VxV.arr f \<longleftrightarrow> VV.arr f" | |
using inclusion VxV.arr_char VV.arr_char arr_char src_def trg_def | |
by auto | |
lemma VxV_comp_eq_VV_comp: | |
shows "VxV.comp = VV.comp" | |
proof - | |
have "\<And>f g. VxV.comp f g = VV.comp f g" | |
proof - | |
fix f g | |
show "VxV.comp f g = VV.comp f g" | |
unfolding VV.comp_def | |
using VxV.comp_char arr_simps(1) arr_simps(2) | |
apply (cases "seq (fst f) (fst g)", cases "seq (snd f) (snd g)") | |
by (elim seqE) auto | |
qed | |
thus ?thesis by blast | |
qed | |
lemma VxVxV_arr_eq_VVV_arr: | |
shows "VxVxV.arr f \<longleftrightarrow> VVV.arr f" | |
using VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char | |
by auto | |
lemma VxVxV_comp_eq_VVV_comp: | |
shows "VxVxV.comp = VVV.comp" | |
proof - | |
have "\<And>f g. VxVxV.comp f g = VVV.comp f g" | |
proof - | |
fix f g | |
show "VxVxV.comp f g = VVV.comp f g" | |
proof (cases "VxVxV.seq f g") | |
assume 1: "\<not> VxVxV.seq f g" | |
have "VxVxV.comp f g = VxVxV.null" | |
using 1 VxVxV.ext by blast | |
also have "... = (null, null, null)" | |
using VxVxV.null_char VxV.null_char by simp | |
also have "... = VVV.null" | |
using VVV.null_char VV.null_char by simp | |
also have "... = VVV.comp f g" | |
proof - | |
have "\<not> VVV.seq f g" | |
using 1 VVV.seq_char by blast | |
thus ?thesis | |
by (metis (no_types, lifting) VVV.ext) | |
qed | |
finally show ?thesis by simp | |
next | |
assume 1: "VxVxV.seq f g" | |
have 2: "B.arr (fst f) \<and> B.arr (fst (snd f)) \<and> B.arr (snd (snd f)) \<and> | |
src\<^sub>B (fst f) = a \<and> src\<^sub>B (fst (snd f)) = a \<and> src\<^sub>B (snd (snd f)) = a \<and> | |
trg\<^sub>B (fst f) = a \<and> trg\<^sub>B (fst (snd f)) = a \<and> trg\<^sub>B (snd (snd f)) = a" | |
using 1 VxVxV.seq_char VxV.seq_char arr_char by blast | |
have 3: "B.arr (fst g) \<and> B.arr (fst (snd g)) \<and> B.arr (snd (snd g)) \<and> | |
src\<^sub>B (fst g) = a \<and> src\<^sub>B (fst (snd g)) = a \<and> src\<^sub>B (snd (snd g)) = a \<and> | |
trg\<^sub>B (fst g) = a \<and> trg\<^sub>B (fst (snd g)) = a \<and> trg\<^sub>B (snd (snd g)) = a" | |
using 1 VxVxV.seq_char VxV.seq_char arr_char by blast | |
have 4: "B.seq (fst f) (fst g) \<and> B.seq (fst (snd f)) (fst (snd g)) \<and> | |
B.seq (snd (snd f)) (snd (snd g))" | |
using 1 VxVxV.seq_char VxV.seq_char seq_char by blast | |
have 5: "VxVxV.comp f g = | |
(fst f \<cdot> fst g, fst (snd f) \<cdot> fst (snd g), snd (snd f) \<cdot> snd (snd g))" | |
using 1 2 3 4 VxVxV.seqE VxVxV.comp_char VxV.comp_char seq_char arr_char | |
by (metis (no_types, lifting)) | |
also have "... = VVV.comp f g" | |
using 1 VVV.comp_char VVV.arr_char VV.arr_char | |
apply simp | |
using 2 3 5 arrI arr_simps(1) arr_simps(2) by presburger | |
finally show ?thesis by blast | |
qed | |
qed | |
thus ?thesis by blast | |
qed | |
interpretation H: "functor" VxV.comp \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> | |
using H.functor_axioms hcomp_def VxV_comp_eq_VV_comp by simp | |
interpretation H: binary_endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> .. | |
lemma HoHV_eq_ToTC: | |
shows "HoHV = H.ToTC" | |
using HoHV_def H.ToTC_def VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char | |
by auto | |
lemma HoVH_eq_ToCT: | |
shows "HoVH = H.ToCT" | |
using HoVH_def H.ToCT_def VVV.arr_char VV.arr_char src_def trg_def inclusion arr_char | |
by auto | |
interpretation ToTC: "functor" VxVxV.comp \<open>(\<cdot>)\<close> H.ToTC | |
using HoHV_eq_ToTC VxVxV_comp_eq_VVV_comp HoHV.functor_axioms by simp | |
interpretation ToCT: "functor" VxVxV.comp \<open>(\<cdot>)\<close> H.ToCT | |
using HoVH_eq_ToCT VxVxV_comp_eq_VVV_comp HoVH.functor_axioms by simp | |
interpretation \<alpha>: natural_isomorphism VxVxV.comp \<open>(\<cdot>)\<close> H.ToTC H.ToCT \<alpha> | |
unfolding \<alpha>_def | |
using \<alpha>.natural_isomorphism_axioms HoHV_eq_ToTC HoVH_eq_ToCT \<alpha>_def | |
VxVxV_comp_eq_VVV_comp | |
by simp | |
interpretation L: endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close> | |
proof | |
fix f | |
show "\<not> arr f \<Longrightarrow> fst (w, f) \<star> snd (w, f) = null" | |
using arr_char hcomp_def by auto | |
assume f: "arr f" | |
show "hseq (fst (w, f)) (snd (w, f))" | |
using f hseq_char arr_char src_def trg_def \<omega>_in_vhom cod_char by simp | |
show "dom (fst (w, f) \<star> snd (w, f)) = fst (w, dom f) \<star> snd (w, dom f)" | |
using f arr_char hcomp_def dom_simp by simp | |
show "cod (fst (w, f) \<star> snd (w, f)) = fst (w, cod f) \<star> snd (w, cod f)" | |
using f arr_char hcomp_def cod_simp by simp | |
next | |
fix f g | |
assume fg: "seq g f" | |
show "fst (w, g \<cdot> f) \<star> snd (w, g \<cdot> f) = (fst (w, g) \<star> snd (w, g)) \<cdot> (fst (w, f) \<star> snd (w, f))" | |
by (simp add: fg whisker_left) | |
qed | |
interpretation L': equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close> | |
proof - | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi>" | |
using isomorphic_a_w B.isomorphic_symmetric by force | |
have "\<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright>" | |
using \<phi> in_hom_char | |
by (metis (no_types, lifting) B.in_homE B.src_cod B.src_src B.trg_cod B.trg_trg | |
\<omega>_in_vhom arr_char arr_cod cod_simp) | |
hence \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi> \<and> \<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright> \<and> iso \<phi>" | |
using \<phi> iso_char arr_char by auto | |
interpret \<l>: natural_isomorphism \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> | |
\<open>\<lambda>f. fst (w, f) \<star> snd (w, f)\<close> map \<open>\<lambda>f. \<ll> f \<cdot> (\<phi> \<star> dom f)\<close> | |
proof | |
fix \<mu> | |
show "\<not> arr \<mu> \<Longrightarrow> \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>) = null" | |
using \<phi> arr_char dom_char ext | |
apply simp | |
using comp_null(2) hcomp_def by fastforce | |
assume \<mu>: "arr \<mu>" | |
have 0: "in_hhom (dom \<mu>) a a" | |
using \<mu> arr_char src_dom trg_dom src_def trg_def dom_simp by simp | |
have 1: "in_hhom \<phi> a a" | |
using \<phi> arr_char src_dom trg_dom src_def trg_def by auto | |
have 2: "hseq \<phi> (B.dom \<mu>)" | |
using \<mu> 0 1 dom_simp by (intro hseqI) auto | |
have 3: "seq (\<ll> \<mu>) (\<phi> \<star> dom \<mu>)" | |
proof (intro seqI') | |
show "\<guillemotleft>\<phi> \<star> dom \<mu> : w \<star> dom \<mu> \<Rightarrow> a \<star> dom \<mu>\<guillemotright>" | |
by (metis (no_types, lifting) 0 \<mu> \<phi> hcomp_in_vhom ide_dom ide_in_hom(2) | |
in_hhom_def w_simps(3)) | |
show "\<guillemotleft>\<ll> \<mu> : a \<star> dom \<mu> \<Rightarrow> cod \<mu>\<guillemotright>" | |
using \<mu> 2 \<ll>.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] arr_simps(2) arr_cod by fastforce | |
qed | |
show "dom (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = fst (w, dom \<mu>) \<star> snd (w, dom \<mu>)" | |
proof - | |
have "dom (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = dom \<phi> \<star> dom \<mu>" | |
using \<mu> 3 hcomp_simps(3) dom_comp dom_dom | |
apply (elim seqE) by auto | |
also have "... = fst (w, dom \<mu>) \<star> snd (w, dom \<mu>)" | |
using \<omega>_in_vhom \<phi> | |
by (metis (no_types, lifting) in_homE prod.sel(1) prod.sel(2)) | |
finally show ?thesis by simp | |
qed | |
show "cod (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = map (cod \<mu>)" | |
proof - | |
have "seq (\<ll> \<mu>) (\<phi> \<star> dom \<mu>)" | |
using 3 by simp | |
hence "cod (\<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)) = cod (\<ll> \<mu>)" | |
using cod_comp by blast | |
also have "... = map (cod \<mu>)" | |
using \<mu> by blast | |
finally show ?thesis by blast | |
qed | |
show "map \<mu> \<cdot> \<ll> (dom \<mu>) \<cdot> (\<phi> \<star> dom (dom \<mu>)) = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)" | |
proof - | |
have "map \<mu> \<cdot> \<ll> (dom \<mu>) \<cdot> (\<phi> \<star> dom (dom \<mu>)) = (map \<mu> \<cdot> \<ll> (dom \<mu>)) \<cdot> (\<phi> \<star> dom \<mu>)" | |
using \<mu> comp_assoc by simp | |
also have "... = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)" | |
using \<mu> \<phi> \<ll>.is_natural_1 by auto | |
finally show ?thesis by blast | |
qed | |
show "(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> dom (cod \<mu>))) \<cdot> (fst (w, \<mu>) \<star> snd (w, \<mu>)) = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)" | |
proof - | |
have "(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> dom (cod \<mu>))) \<cdot> (fst (w, \<mu>) \<star> snd (w, \<mu>)) = | |
(\<ll> (cod \<mu>) \<cdot> (\<phi> \<star> B.cod \<mu>)) \<cdot> (w \<star> \<mu>)" | |
using \<mu> \<phi> dom_char arr_char \<omega>_in_vhom cod_simp by simp | |
also have "... = \<ll> (cod \<mu>) \<cdot> (\<phi> \<cdot> w \<star> B.cod \<mu> \<cdot> \<mu>)" | |
proof - | |
have "seq \<phi> w" | |
using \<phi> \<omega>_in_vhom w_simps(1) by blast | |
moreover have 2: "seq (B.cod \<mu>) \<mu>" | |
using \<mu> seq_char cod_simp by (simp add: comp_cod_arr) | |
moreover have "src \<phi> = trg (B.cod \<mu>)" | |
using \<mu> \<phi> 2 | |
by (metis (no_types, lifting) arr_simps(2) seqE vconn_implies_hpar(1) w_simps(3)) | |
ultimately show ?thesis | |
using interchange comp_assoc by simp | |
qed | |
also have "... = \<ll> (cod \<mu>) \<cdot> (\<phi> \<star> \<mu>)" | |
using \<mu> \<phi> \<omega>_in_vhom comp_arr_dom comp_cod_arr cod_simp | |
apply (elim conjE in_homE) by auto | |
also have "... = (\<ll> (cod \<mu>) \<cdot> (cod \<phi> \<star> \<mu>)) \<cdot> (\<phi> \<star> dom \<mu>)" | |
proof - | |
have 1: "seq (cod \<phi>) \<phi>" | |
using \<phi> arr_cod_iff_arr dom_cod iso_is_arr seqI by presburger | |
moreover have 2: "seq \<mu> (dom \<mu>)" | |
using \<mu> by (simp add: comp_arr_dom) | |
moreover have "src (cod \<phi>) = trg \<mu>" | |
using \<mu> \<phi> arr_cod arr_simps(1-2) iso_is_arr by auto | |
ultimately show ?thesis | |
using 1 2 interchange [of "cod \<phi>" \<phi> \<mu> "dom \<mu>"] comp_arr_dom comp_cod_arr | |
comp_assoc by fastforce | |
qed | |
also have "... = \<ll> \<mu> \<cdot> (\<phi> \<star> dom \<mu>)" | |
proof - | |
have "L \<mu> = cod \<phi> \<star> \<mu>" | |
using \<mu> \<phi> arr_simps(2) in_homE by auto | |
hence "\<ll> (cod \<mu>) \<cdot> (cod \<phi> \<star> \<mu>) = \<ll> \<mu>" | |
using \<mu> \<ll>.is_natural_2 [of \<mu>] by simp | |
thus ?thesis by simp | |
qed | |
finally show ?thesis by simp | |
qed | |
next | |
show "\<And>f. ide f \<Longrightarrow> iso (\<ll> f \<cdot> (\<phi> \<star> dom f))" | |
proof - | |
fix f | |
assume f: "ide f" | |
have "iso (\<ll> f)" | |
using f iso_lunit by simp | |
moreover have "iso (\<phi> \<star> dom f)" | |
using \<phi> f src_def trg_def ide_char arr_char | |
apply (intro iso_hcomp, simp_all) | |
by (metis (no_types, lifting) in_homE) | |
moreover have "seq (\<ll> f) (\<phi> \<star> dom f)" | |
proof (intro seqI') | |
show " \<guillemotleft>\<ll> f : a \<star> f \<Rightarrow> f\<guillemotright>" | |
using f lunit_in_hom(2) \<ll>_ide_simp ide_char arr_char trg_def by simp | |
show "\<guillemotleft>\<phi> \<star> dom f : w \<star> f \<Rightarrow> a \<star> f\<guillemotright>" | |
using \<phi> f ide_char arr_char hcomp_def src_def trg_def obj_a ide_in_hom | |
in_hom_char | |
by (intro hcomp_in_vhom, auto) | |
qed | |
ultimately show "iso (\<ll> f \<cdot> (\<phi> \<star> dom f))" | |
using isos_compose by simp | |
qed | |
qed | |
show "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (w, f) \<star> snd (w, f))" | |
using \<l>.natural_isomorphism_axioms L.isomorphic_to_identity_is_equivalence by simp | |
qed | |
interpretation L: equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f)\<close> | |
proof - | |
have "(\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f)) = (\<lambda>f. fst (w, f) \<star> snd (w, f))" | |
using \<omega>_in_vhom by simp | |
thus "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (cod \<omega>, f) \<star> snd (cod \<omega>, f))" | |
using L'.equivalence_functor_axioms by simp | |
qed | |
interpretation R: endofunctor \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close> | |
proof | |
fix f | |
show "\<not> arr f \<Longrightarrow> fst (f, w) \<star> snd (f, w) = null" | |
using arr_char hcomp_def by auto | |
assume f: "arr f" | |
show "hseq (fst (f, w)) (snd (f, w))" | |
using f hseq_char arr_char src_def trg_def \<omega>_in_vhom cod_char isomorphic_a_w | |
B.isomorphic_def in_hom_char | |
by simp | |
show "dom (fst (f, w) \<star> snd (f, w)) = fst (dom f, w) \<star> snd (dom f, w)" | |
using f arr_char dom_char cod_char hcomp_def \<omega>_in_vhom by simp | |
show "cod (fst (f, w) \<star> snd (f, w)) = fst (cod f, w) \<star> snd (cod f, w)" | |
using f arr_char dom_char cod_char hcomp_def \<omega>_in_vhom by simp | |
next | |
fix f g | |
assume fg: "seq g f" | |
have 1: "a \<cdot>\<^sub>B a = a" | |
using obj_a by auto | |
show "fst (g \<cdot> f, w) \<star> snd (g \<cdot> f, w) = (fst (g, w) \<star> snd (g, w)) \<cdot> (fst (f, w) \<star> snd (f, w))" | |
by (simp add: fg whisker_right) | |
qed | |
interpretation R': equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close> | |
proof - | |
obtain \<phi> where \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi>" | |
using isomorphic_a_w B.isomorphic_symmetric by force | |
have "\<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright>" | |
using \<phi> in_hom_char | |
by (metis (no_types, lifting) B.in_homE B.src_cod B.src_src B.trg_cod B.trg_trg | |
\<omega>_in_vhom arr_char arr_cod cod_simp) | |
hence \<phi>: "\<guillemotleft>\<phi> : w \<Rightarrow>\<^sub>B a\<guillemotright> \<and> B.iso \<phi> \<and> \<guillemotleft>\<phi> : w \<Rightarrow> a\<guillemotright> \<and> iso \<phi>" | |
using \<phi> iso_char arr_char by auto | |
interpret \<r>: natural_isomorphism comp comp | |
\<open>\<lambda>f. fst (f, w) \<star> snd (f, w)\<close> map \<open>\<lambda>f. \<rr> f \<cdot> (dom f \<star> \<phi>)\<close> | |
proof | |
fix \<mu> | |
show "\<not> arr \<mu> \<Longrightarrow> \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>) = null" | |
using \<phi> arr_char dom_char ext | |
apply simp | |
using comp_null(2) hcomp_def by fastforce | |
assume \<mu>: "arr \<mu>" | |
have 0: "in_hhom (dom \<mu>) a a" | |
using \<mu> arr_char src_dom trg_dom src_def trg_def dom_simp by simp | |
have 1: "in_hhom \<phi> a a" | |
using \<phi> arr_char src_dom trg_dom src_def trg_def by auto | |
have 2: "hseq (B.dom \<mu>) \<phi>" | |
using \<mu> 0 1 dom_simp hseqI by auto | |
have 3: "seq (\<rr> \<mu>) (dom \<mu> \<star> \<phi>)" | |
proof (intro seqI') | |
show "\<guillemotleft>dom \<mu> \<star> \<phi> : dom \<mu> \<star> w \<Rightarrow> dom \<mu> \<star> a\<guillemotright>" | |
by (metis (no_types, lifting) "0" "1" \<mu> \<phi> hcomp_in_vhom hseqI hseq_char | |
ide_dom ide_in_hom(2) vconn_implies_hpar(2)) | |
show "\<guillemotleft>\<rr> \<mu> : dom \<mu> \<star> a \<Rightarrow> cod \<mu>\<guillemotright>" | |
using \<mu> 2 \<rr>.preserves_hom [of \<mu> "dom \<mu>" "cod \<mu>"] arr_simps(2) arr_cod | |
dom_simp cod_simp | |
by fastforce | |
qed | |
show "dom (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = fst (dom \<mu>, w) \<star> snd (dom \<mu>, w)" | |
proof - | |
have "dom (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = dom \<mu> \<star> dom \<phi>" | |
using \<mu> 3 hcomp_simps(3) dom_comp dom_dom | |
apply (elim seqE) by auto | |
also have "... = fst (dom \<mu>, w) \<star> snd (dom \<mu>, w)" | |
using \<omega>_in_vhom \<phi> | |
by (metis (no_types, lifting) in_homE prod.sel(1) prod.sel(2)) | |
finally show ?thesis by simp | |
qed | |
show "cod (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = map (cod \<mu>)" | |
proof - | |
have "seq (\<rr> \<mu>) (dom \<mu> \<star> \<phi>)" | |
using 3 by simp | |
hence "cod (\<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)) = cod (\<rr> \<mu>)" | |
using cod_comp by blast | |
also have "... = map (cod \<mu>)" | |
using \<mu> by blast | |
finally show ?thesis by blast | |
qed | |
show "map \<mu> \<cdot> \<rr> (dom \<mu>) \<cdot> (dom (dom \<mu>) \<star> \<phi>) = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)" | |
proof - | |
have "map \<mu> \<cdot> \<rr> (dom \<mu>) \<cdot> (dom (dom \<mu>) \<star> \<phi>) = | |
(map \<mu> \<cdot> \<rr> (dom \<mu>)) \<cdot> (dom (dom \<mu>) \<star> \<phi>)" | |
using comp_assoc by simp | |
also have "... = (map \<mu> \<cdot> \<rr> (dom \<mu>)) \<cdot> (dom \<mu> \<star> \<phi>)" | |
using \<mu> dom_dom by simp | |
also have "... = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)" | |
using \<mu> \<phi> \<rr>.is_natural_1 by auto | |
finally show ?thesis by blast | |
qed | |
show "(\<rr> (cod \<mu>) \<cdot> (dom (cod \<mu>) \<star> \<phi>)) \<cdot> (fst (\<mu>, w) \<star> snd (\<mu>, w)) = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)" | |
proof - | |
have "(\<rr> (cod \<mu>) \<cdot> (dom (cod \<mu>) \<star> \<phi>)) \<cdot> (fst (\<mu>, w) \<star> snd (\<mu>, w)) = | |
(\<rr> (cod \<mu>) \<cdot> (B.cod \<mu> \<star> \<phi>)) \<cdot> (\<mu> \<star> w)" | |
using \<mu> \<phi> dom_char arr_char \<omega>_in_vhom cod_simp by simp | |
also have "... = \<rr> (cod \<mu>) \<cdot> (B.cod \<mu> \<cdot> \<mu> \<star> \<phi> \<cdot> w)" | |
proof - | |
have 2: "seq \<phi> w" | |
using \<phi> \<omega>_in_vhom w_simps(1) by blast | |
moreover have "seq (B.cod \<mu>) \<mu>" | |
using \<mu> seq_char cod_simp by (simp add: comp_cod_arr) | |
moreover have "src (B.cod \<mu>) = trg \<phi>" | |
using \<mu> \<phi> 2 | |
using arr_simps(1) calculation(2) seq_char vconn_implies_hpar(2) by force | |
ultimately show ?thesis | |
using interchange comp_assoc by simp | |
qed | |
also have "... = \<rr> (cod \<mu>) \<cdot> (\<mu> \<star> \<phi>)" | |
using \<mu> \<phi> \<omega>_in_vhom comp_arr_dom comp_cod_arr cod_simp | |
apply (elim conjE in_homE) by auto | |
also have "... = (\<rr> (cod \<mu>) \<cdot> (\<mu> \<star> cod \<phi>)) \<cdot> (dom \<mu> \<star> \<phi>)" | |
proof - | |
have "(\<mu> \<star> cod \<phi>) \<cdot> (dom \<mu> \<star> \<phi>) = \<mu> \<star> \<phi>" | |
proof - | |
have "seq \<mu> (dom \<mu>)" | |
using \<mu> by (simp add: comp_arr_dom) | |
moreover have "seq (cod \<phi>) \<phi>" | |
using \<phi> iso_is_arr arr_cod dom_cod by auto | |
moreover have "src \<mu> = trg (cod \<phi>)" | |
using \<mu> \<phi> 2 | |
by (metis (no_types, lifting) arr_simps(1) arr_simps(2) calculation(2) seqE) | |
ultimately show ?thesis | |
using \<mu> \<phi> iso_is_arr comp_arr_dom comp_cod_arr | |
interchange [of \<mu> "dom \<mu>" "cod \<phi>" \<phi>] | |
by simp | |
qed | |
thus ?thesis | |
using comp_assoc by simp | |
qed | |
also have "... = \<rr> \<mu> \<cdot> (dom \<mu> \<star> \<phi>)" | |
proof - | |
have "\<mu> \<star> cod \<phi> = R \<mu>" | |
using \<mu> \<phi> arr_simps(1) in_homE by auto | |
hence "\<rr> (cod \<mu>) \<cdot> (\<mu> \<star> cod \<phi>) = \<rr> \<mu>" | |
using \<mu> \<phi> \<rr>.is_natural_2 by simp | |
thus ?thesis by simp | |
qed | |
finally show ?thesis by simp | |
qed | |
next | |
show "\<And>f. ide f \<Longrightarrow> iso (\<rr> f \<cdot> (dom f \<star> \<phi>))" | |
proof - | |
fix f | |
assume f: "ide f" | |
have 1: "iso (\<rr> f)" | |
using f iso_lunit by simp | |
moreover have 2: "iso (dom f \<star> \<phi>)" | |
using \<phi> f src_def trg_def ide_char arr_char | |
apply (intro iso_hcomp, simp_all) | |
by (metis (no_types, lifting) in_homE) | |
moreover have "seq (\<rr> f) (dom f \<star> \<phi>)" | |
proof (intro seqI') | |
show "\<guillemotleft>\<rr> f : f \<star> a \<Rightarrow> f\<guillemotright>" | |
using f runit_in_hom(2) \<rr>_ide_simp ide_char arr_char src_def by simp | |
show "\<guillemotleft>dom f \<star> \<phi> : f \<star> w \<Rightarrow> f \<star> a\<guillemotright>" | |
using \<phi> f ide_char arr_char hcomp_def src_def trg_def obj_a ide_in_hom | |
in_hom_char | |
by (intro hcomp_in_vhom, auto) | |
qed | |
ultimately show "iso (\<rr> f \<cdot> (dom f \<star> \<phi>))" | |
using isos_compose by simp | |
qed | |
qed | |
show "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (f, w) \<star> snd (f, w))" | |
using \<r>.natural_isomorphism_axioms R.isomorphic_to_identity_is_equivalence by simp | |
qed | |
interpretation R: equivalence_functor \<open>(\<cdot>)\<close> \<open>(\<cdot>)\<close> \<open>\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>)\<close> | |
proof - | |
have "(\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>)) = (\<lambda>f. fst (f, w) \<star> snd (f, w))" | |
using \<omega>_in_vhom by simp | |
thus "equivalence_functor (\<cdot>) (\<cdot>) (\<lambda>f. fst (f, cod \<omega>) \<star> snd (f, cod \<omega>))" | |
using R'.equivalence_functor_axioms by simp | |
qed | |
interpretation M: monoidal_category \<open>(\<cdot>)\<close> \<open>\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>\<close> \<alpha> \<omega> | |
proof | |
show "\<guillemotleft>\<omega> : fst (cod \<omega>, cod \<omega>) \<star> snd (cod \<omega>, cod \<omega>) \<Rightarrow> cod \<omega>\<guillemotright>" | |
using \<omega>_in_vhom hcomp_def arr_char by auto | |
show "iso \<omega>" | |
using \<omega>_is_iso iso_char arr_char inv_char \<omega>_in_vhom by auto | |
show "\<And>f g h k. \<lbrakk> ide f; ide g; ide h; ide k \<rbrakk> \<Longrightarrow> | |
(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot> | |
\<alpha> (f, hcomp (fst (g, h)) (snd (g, h)), k) \<cdot> | |
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) = | |
\<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)" | |
proof - | |
fix f g h k | |
assume f: "ide f" and g: "ide g" and h: "ide h" and k: "ide k" | |
have 1: "VVV.arr (f, g, h) \<and> VVV.arr (g, h, k)" | |
using f g h k VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char | |
by simp | |
have 2: "VVV.arr (f, g \<star> h, k)" | |
using f g h k 1 HoHV_def VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char | |
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp hseqI' | |
by auto | |
have 3: "VVV.arr (f, g, h \<star> k)" | |
using f g h k 1 VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char | |
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp H.preserves_reflects_arr hseqI' | |
by auto | |
have 4: "VVV.arr (f \<star> g, h, k)" | |
using f g h k VVV.arr_char VV.arr_char src_def trg_def ide_char arr_char hseq_char | |
VxV.arrI VxVxV.arrI VxVxV_comp_eq_VVV_comp | |
by force | |
have "(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot> | |
\<alpha> (f, fst (g, h) \<star> snd (g, h), k) \<cdot> | |
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) = | |
(f \<star> \<a>\<^sub>B[g, h, k]) \<cdot> \<a>\<^sub>B[f, g \<star> h, k] \<cdot> (\<a>\<^sub>B[f, g, h] \<star> k)" | |
unfolding \<alpha>_def by (simp add: 1 2) | |
also have "... = (f \<star>\<^sub>B \<a>\<^sub>B g h k) \<cdot> \<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot> (\<a>\<^sub>B f g h \<star>\<^sub>B k)" | |
unfolding hcomp_def | |
using f g h k src_def trg_def arr_char | |
using assoc_closed ide_char by auto | |
also have "... = (f \<star>\<^sub>B \<a>\<^sub>B g h k) \<cdot>\<^sub>B \<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B (\<a>\<^sub>B f g h \<star>\<^sub>B k)" | |
proof - | |
have "arr (f \<star>\<^sub>B \<a>\<^sub>B g h k)" | |
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp | |
moreover have "arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k)" | |
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp | |
moreover have "arr (\<a>\<^sub>B f g h \<star>\<^sub>B k)" | |
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp | |
moreover have "arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B (\<a>\<^sub>B f g h \<star>\<^sub>B k))" | |
unfolding arr_char | |
apply (intro conjI) | |
using ide_char arr_char assoc_closed f g h hcomp_closed k B.HoHV_def B.HoVH_def | |
apply (intro B.seqI) | |
apply simp_all | |
proof - | |
have 1: "B.arr (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k)" | |
using f g h k ide_char arr_char B.HoHV_def B.HoVH_def | |
apply (intro B.seqI) | |
by auto | |
show "src\<^sub>B (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k) = a" | |
using 1 f g h k arr_char B.src_vcomp B.vseq_implies_hpar(1) by fastforce | |
show "trg\<^sub>B (\<a>\<^sub>B f (g \<star>\<^sub>B h) k \<cdot>\<^sub>B \<a>\<^sub>B f g h \<star>\<^sub>B k) = a" | |
using "1" arr_char calculation(2-3) by auto | |
qed | |
ultimately show ?thesis | |
using B.ext comp_char by (metis (no_types, lifting)) | |
qed | |
also have "... = \<a>\<^sub>B f g (h \<star>\<^sub>B k) \<cdot>\<^sub>B \<a>\<^sub>B (f \<star>\<^sub>B g) h k" | |
using f g h k src_def trg_def arr_char ide_char B.pentagon | |
using "4" \<alpha>_def hcomp_def by auto | |
also have "... = \<a>\<^sub>B f g (h \<star>\<^sub>B k) \<cdot> \<a>\<^sub>B (f \<star>\<^sub>B g) h k" | |
proof - | |
have "arr (\<a>\<^sub>B (f \<star>\<^sub>B g) h k)" | |
using ide_char arr_char assoc_closed f g h hcomp_closed k by simp | |
moreover have "arr (\<a>\<^sub>B f g (h \<star>\<^sub>B k))" | |
using ide_char arr_char assoc_closed f g h hcomp_closed k by fastforce | |
ultimately show ?thesis | |
using B.ext comp_char by auto | |
qed | |
also have "... = \<a>\<^sub>B[f, g, fst (h, k) \<star> snd (h, k)] \<cdot> \<a>\<^sub>B[fst (f, g) \<star> snd (f, g), h, k]" | |
unfolding hcomp_def | |
using f g h k src_def trg_def arr_char ide_char by simp | |
also have "... = \<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)" | |
unfolding \<alpha>_def using 1 2 3 4 by simp | |
finally show "(fst (f, \<alpha> (g, h, k)) \<star> snd (f, \<alpha> (g, h, k))) \<cdot> | |
\<alpha> (f, fst (g, h) \<star> snd (g, h), k) \<cdot> | |
(fst (\<alpha> (f, g, h), k) \<star> snd (\<alpha> (f, g, h), k)) = | |
\<alpha> (f, g, fst (h, k) \<star> snd (h, k)) \<cdot> \<alpha> (fst (f, g) \<star> snd (f, g), h, k)" | |
by simp | |
qed | |
qed | |
proposition is_monoidal_category: | |
shows "monoidal_category (\<cdot>) (\<lambda>\<mu>\<nu>. fst \<mu>\<nu> \<star> snd \<mu>\<nu>) \<alpha> \<omega>" | |
.. | |
end | |
text \<open> | |
In a bicategory, the ``objects'' are essentially arbitrarily chosen representatives | |
of their isomorphism classes. Choosing any other representatives results in an | |
equivalent structure. Each object \<open>a\<close> is additionally equipped with an arbitrarily chosen | |
unit isomorphism \<open>\<guillemotleft>\<iota> : a \<star> a \<Rightarrow> a\<guillemotright>\<close>. For any \<open>(a, \<iota>)\<close> and \<open>(a', \<iota>')\<close>, | |
where \<open>a\<close> and \<open>a'\<close> are isomorphic to the same object, there exists a unique isomorphism | |
\<open>\<guillemotleft>\<psi>: a \<Rightarrow> a'\<guillemotright>\<close> that is compatible with the chosen unit isomorphisms \<open>\<iota>\<close> and \<open>\<iota>'\<close>. | |
We have already proved this property for monoidal categories, which are bicategories | |
with just one ``object''. Here we use that already-proven property to establish its | |
generalization to arbitary bicategories, by exploiting the fact that if \<open>a\<close> is an object | |
in a bicategory, then the sub-bicategory consisting of all \<open>\<mu>\<close> such that | |
\<open>src \<mu> = a = trg \<mu>\<close>, is a monoidal category. | |
At some point it would potentially be nicer to transfer the proof for monoidal | |
categories to obtain a direct, ``native'' proof of this fact for bicategories. | |
\<close> | |
lemma (in bicategory) unit_unique_upto_unique_iso: | |
assumes "obj a" | |
and "isomorphic a w" | |
and "\<guillemotleft>\<omega> : w \<star> w \<Rightarrow> w\<guillemotright>" | |
and "iso \<omega>" | |
shows "\<exists>!\<psi>. \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright> \<and> iso \<psi> \<and> \<psi> \<cdot> \<i>[a] = \<omega> \<cdot> (\<psi> \<star> \<psi>)" | |
proof - | |
have \<omega>_in_hhom: "\<guillemotleft>\<omega> : a \<rightarrow> a\<guillemotright>" | |
using assms | |
apply (intro in_hhomI) | |
apply auto | |
apply (metis src_cod in_homE isomorphic_implies_hpar(3) objE) | |
by (metis trg_cod in_homE isomorphic_implies_hpar(4) objE) | |
interpret S: subbicategory V H \<a> \<i> src trg \<open>\<lambda>\<mu>. arr \<mu> \<and> src \<mu> = a \<and> trg \<mu> = a\<close> | |
using assms iso_unit in_homE isoE isomorphicE VVV.arr_char VV.arr_char | |
apply unfold_locales | |
apply auto[7] | |
proof | |
fix f g h | |
assume f: "(arr f \<and> src f = a \<and> trg f = a) \<and> ide f" | |
and g: "(arr g \<and> src g = a \<and> trg g = a) \<and> ide g" | |
and h: "(arr h \<and> src h = a \<and> trg h = a) \<and> ide h" | |
and fg: "src f = trg g" and gh: "src g = trg h" | |
show "arr (\<a>[f, g, h])" | |
using assms f g h fg gh by auto | |
show "src (\<a>[f, g, h]) = a \<and> trg (\<a>[f, g, h]) = a" | |
using assms f g h fg gh by auto | |
show "arr (inv (\<a>[f, g, h])) \<and> src (inv (\<a>[f, g, h])) = a \<and> trg (inv (\<a>[f, g, h])) = a" | |
using assms f g h fg gh \<alpha>.preserves_hom src_dom trg_dom by simp | |
next | |
fix f | |
assume f: "arr f \<and> src f = a \<and> trg f = a" | |
assume ide_left: "ide f" | |
show "arr (\<ll> f) \<and> src (\<ll> f) = a \<and> trg (\<ll> f) = a" | |
using f assms(1) \<ll>.preserves_hom src_cod [of "\<ll> f"] trg_cod [of "\<ll> f"] by simp | |
show "arr (inv (\<ll> f)) \<and> src (inv (\<ll> f)) = a \<and> trg (inv (\<ll> f)) = a" | |
using f ide_left assms(1) \<ll>'.preserves_hom src_dom [of "\<ll>'.map f"] trg_dom [of "\<ll>'.map f"] | |
by simp | |
show "arr (\<rr> f) \<and> src (\<rr> f) = a \<and> trg (\<rr> f) = a" | |
using f assms(1) \<rr>.preserves_hom src_cod [of "\<rr> f"] trg_cod [of "\<rr> f"] by simp | |
show "arr (inv (\<rr> f)) \<and> src (inv (\<rr> f)) = a \<and> trg (inv (\<rr> f)) = a" | |
using f ide_left assms(1) \<rr>'.preserves_hom src_dom [of "\<rr>'.map f"] trg_dom [of "\<rr>'.map f"] | |
by simp | |
qed | |
interpret S: subbicategory_at_object V H \<a> \<i> src trg a a \<open>\<i>[a]\<close> | |
proof | |
show "obj a" by fact | |
show "isomorphic a a" | |
using assms(1) isomorphic_reflexive by blast | |
show "S.in_hom \<i>[a] (a \<star> a) a" | |
using S.arr_char S.in_hom_char assms(1) by fastforce | |
show "iso \<i>[a]" | |
using assms iso_unit by simp | |
qed | |
interpret S\<^sub>\<omega>: subbicategory_at_object V H \<a> \<i> src trg a w \<omega> | |
proof | |
show "obj a" by fact | |
show "iso \<omega>" by fact | |
show "isomorphic a w" | |
using assms by simp | |
show "S.in_hom \<omega> (w \<star> w) w" | |
using assms S.arr_char S.dom_char S.cod_char \<omega>_in_hhom | |
by (intro S.in_homI, auto) | |
qed | |
interpret M: monoidal_category S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<open>\<i>[a]\<close> | |
using S.is_monoidal_category by simp | |
interpret M\<^sub>\<omega>: monoidal_category S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<omega> | |
using S\<^sub>\<omega>.is_monoidal_category by simp | |
interpret M: monoidal_category_with_alternate_unit | |
S.comp \<open>\<lambda>\<mu>\<nu>. S.hcomp (fst \<mu>\<nu>) (snd \<mu>\<nu>)\<close> S.\<alpha> \<open>\<i>[a]\<close> \<omega> .. | |
have 1: "M\<^sub>\<omega>.unity = w" | |
using assms M\<^sub>\<omega>.unity_def S.cod_char S.arr_char | |
by (metis (no_types, lifting) S.in_homE S\<^sub>\<omega>.\<omega>_in_vhom) | |
have 2: "M.unity = a" | |
using assms M.unity_def S.cod_char S.arr_char by simp | |
have "\<exists>!\<psi>. S.in_hom \<psi> a w \<and> S.iso \<psi> \<and> S.comp \<psi> \<i>[a] = S.comp \<omega> (M.tensor \<psi> \<psi>)" | |
using assms 1 2 M.unit_unique_upto_unique_iso M.unity_def M\<^sub>\<omega>.unity_def S.cod_char | |
by simp | |
show "\<exists>!\<psi>. \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright> \<and> iso \<psi> \<and> \<psi> \<cdot> \<i>[a] = \<omega> \<cdot> (\<psi> \<star> \<psi>)" | |
proof - | |
have 1: "\<And>\<psi>. S.in_hom \<psi> a w \<longleftrightarrow> \<guillemotleft>\<psi> : a \<Rightarrow> w\<guillemotright>" | |
using assms S.in_hom_char S.arr_char | |
by (metis (no_types, lifting) S.ideD(1) S.w_simps(1) S\<^sub>\<omega>.w_simps(1) in_homE | |
src_dom trg_dom) | |
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.iso \<psi> \<longleftrightarrow> iso \<psi>" | |
using assms S.in_hom_char S.arr_char S.iso_char by auto | |
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> M.tensor \<psi> \<psi> = \<psi> \<star> \<psi>" | |
using assms S.in_hom_char S.arr_char S.hcomp_def by simp | |
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.comp \<psi> \<i>[a] = \<psi> \<cdot> \<i>[a]" | |
using assms S.in_hom_char S.comp_char by auto | |
moreover have "\<And>\<psi>. S.in_hom \<psi> a w \<Longrightarrow> S.comp \<omega> (M.tensor \<psi> \<psi>) = \<omega> \<cdot> (\<psi> \<star> \<psi>)" | |
using assms S.in_hom_char S.arr_char S.hcomp_def S.comp_char S.dom_char S.cod_char | |
by (metis (no_types, lifting) M\<^sub>\<omega>.arr_tensor S\<^sub>\<omega>.\<omega>_simps(1) calculation(3) ext) | |
ultimately show ?thesis | |
by (metis (no_types, lifting) M.unit_unique_upto_unique_iso M.unity_def M\<^sub>\<omega>.unity_def | |
S.\<omega>_in_vhom S.in_homE S\<^sub>\<omega>.\<omega>_in_vhom) | |
qed | |
qed | |
end | |