Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Banach_Steinhaus_Missing.thy | |
Author: Dominique Unruh, University of Tartu | |
Author: Jose Manuel Rodriguez Caballero, University of Tartu | |
*) | |
section \<open>Missing results for the proof of Banach-Steinhaus theorem\<close> | |
theory Banach_Steinhaus_Missing | |
imports | |
"HOL-Analysis.Bounded_Linear_Function" | |
"HOL-Analysis.Line_Segment" | |
begin | |
subsection \<open>Results missing for the proof of Banach-Steinhaus theorem\<close> | |
text \<open> | |
The results proved here are preliminaries for the proof of Banach-Steinhaus theorem using Sokal's | |
approach, but they do not explicitly appear in Sokal's paper ~\cite{sokal2011reall}. | |
\<close> | |
text\<open>Notation for the norm\<close> | |
bundle notation_norm begin | |
notation norm ("\<parallel>_\<parallel>") | |
end | |
bundle no_notation_norm begin | |
no_notation norm ("\<parallel>_\<parallel>") | |
end | |
unbundle notation_norm | |
text\<open>Notation for apply bilinear function\<close> | |
bundle notation_blinfun_apply begin | |
notation blinfun_apply (infixr "*\<^sub>v" 70) | |
end | |
bundle no_notation_blinfun_apply begin | |
no_notation blinfun_apply (infixr "*\<^sub>v" 70) | |
end | |
unbundle notation_blinfun_apply | |
lemma bdd_above_plus: | |
fixes f::\<open>'a \<Rightarrow> real\<close> | |
assumes \<open>bdd_above (f ` S)\<close> and \<open>bdd_above (g ` S)\<close> | |
shows \<open>bdd_above ((\<lambda> x. f x + g x) ` S)\<close> | |
text \<open> | |
Explanation: If the images of two real-valued functions \<^term>\<open>f\<close>,\<^term>\<open>g\<close> are bounded above on a | |
set \<^term>\<open>S\<close>, then the image of their sum is bounded on \<^term>\<open>S\<close>. | |
\<close> | |
proof- | |
obtain M where \<open>\<And> x. x\<in>S \<Longrightarrow> f x \<le> M\<close> | |
using \<open>bdd_above (f ` S)\<close> unfolding bdd_above_def by blast | |
obtain N where \<open>\<And> x. x\<in>S \<Longrightarrow> g x \<le> N\<close> | |
using \<open>bdd_above (g ` S)\<close> unfolding bdd_above_def by blast | |
have \<open>\<And> x. x\<in>S \<Longrightarrow> f x + g x \<le> M + N\<close> | |
using \<open>\<And>x. x \<in> S \<Longrightarrow> f x \<le> M\<close> \<open>\<And>x. x \<in> S \<Longrightarrow> g x \<le> N\<close> by fastforce | |
thus ?thesis unfolding bdd_above_def by blast | |
qed | |
text\<open>The maximum of two functions\<close> | |
definition pointwise_max:: "('a \<Rightarrow> 'b::ord) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where | |
\<open>pointwise_max f g = (\<lambda>x. max (f x) (g x))\<close> | |
lemma max_Sup_absorb_left: | |
fixes f g::\<open>'a \<Rightarrow> real\<close> | |
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> | |
shows \<open>Sup ((pointwise_max f g) ` X) = Sup (f ` X)\<close> | |
text \<open>Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close>, if the supremum of \<^term>\<open>f\<close> is | |
greater-equal the supremum of \<^term>\<open>g\<close>, then the supremum of \<^term>\<open>max f g\<close> equals the supremum of | |
\<^term>\<open>f\<close>. (Under some technical conditions.)\<close> | |
proof- | |
have y_Sup: \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X) \<Longrightarrow> y \<le> Sup (f ` X)\<close> for y | |
proof- | |
assume \<open>y \<in> ((\<lambda> x. max (f x) (g x)) ` X)\<close> | |
then obtain x where \<open>y = max (f x) (g x)\<close> and \<open>x \<in> X\<close> | |
by blast | |
have \<open>f x \<le> Sup (f ` X)\<close> | |
by (simp add: \<open>x \<in> X\<close> \<open>bdd_above (f ` X)\<close> cSUP_upper) | |
moreover have \<open>g x \<le> Sup (g ` X)\<close> | |
by (simp add: \<open>x \<in> X\<close> \<open>bdd_above (g ` X)\<close> cSUP_upper) | |
ultimately have \<open>max (f x) (g x) \<le> Sup (f ` X)\<close> | |
using \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by auto | |
thus ?thesis by (simp add: \<open>y = max (f x) (g x)\<close>) | |
qed | |
have y_f_X: \<open>y \<in> f ` X \<Longrightarrow> y \<le> Sup ((\<lambda> x. max (f x) (g x)) ` X)\<close> for y | |
proof- | |
assume \<open>y \<in> f ` X\<close> | |
then obtain x where \<open>x \<in> X\<close> and \<open>y = f x\<close> | |
by blast | |
have \<open>bdd_above ((\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X)\<close> | |
by (metis (no_types) \<open>bdd_above (f ` X)\<close> \<open>bdd_above (g ` X)\<close> bdd_above_image_sup sup_max) | |
moreover have \<open>e > 0 \<Longrightarrow> \<exists> k \<in> (\<lambda> \<xi>. max (f \<xi>) (g \<xi>)) ` X. y \<le> k + e\<close> | |
for e::real | |
using \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close> by (smt \<open>x \<in> X\<close> \<open>y = f x\<close> image_eqI) | |
ultimately show ?thesis | |
using \<open>x \<in> X\<close> \<open>y = f x\<close> cSUP_upper by fastforce | |
qed | |
have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<le> Sup (f ` X)\<close> | |
using y_Sup by (simp add: \<open>X \<noteq> {}\<close> cSup_least) | |
moreover have \<open>Sup ((\<lambda> x. max (f x) (g x)) ` X) \<ge> Sup (f ` X)\<close> | |
using y_f_X by (metis (mono_tags) cSup_least calculation empty_is_image) | |
ultimately show ?thesis unfolding pointwise_max_def by simp | |
qed | |
lemma max_Sup_absorb_right: | |
fixes f g::\<open>'a \<Rightarrow> real\<close> | |
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> and \<open>Sup (f ` X) \<le> Sup (g ` X)\<close> | |
shows \<open>Sup ((pointwise_max f g) ` X) = Sup (g ` X)\<close> | |
text \<open> | |
Explanation: For real-valued functions \<^term>\<open>f\<close> and \<^term>\<open>g\<close> and a nonempty set \<^term>\<open>X\<close>, such that | |
the \<^term>\<open>f\<close> and \<^term>\<open>g\<close> are bounded above on \<^term>\<open>X\<close>, if the supremum of \<^term>\<open>f\<close> on \<^term>\<open>X\<close> is | |
lower-equal the supremum of \<^term>\<open>g\<close> on \<^term>\<open>X\<close>, then the supremum of \<^term>\<open>pointwise_max f g\<close> on \<^term>\<open>X\<close> | |
equals the supremum of \<^term>\<open>g\<close>. This is the right analog of @{text max_Sup_absorb_left}. | |
\<close> | |
proof- | |
have \<open>Sup ((pointwise_max g f) ` X) = Sup (g ` X)\<close> | |
using assms by (simp add: max_Sup_absorb_left) | |
moreover have \<open>pointwise_max g f = pointwise_max f g\<close> | |
unfolding pointwise_max_def by auto | |
ultimately show ?thesis by simp | |
qed | |
lemma max_Sup: | |
fixes f g::\<open>'a \<Rightarrow> real\<close> | |
assumes \<open>X \<noteq> {}\<close> and \<open>bdd_above (f ` X)\<close> and \<open>bdd_above (g ` X)\<close> | |
shows \<open>Sup ((pointwise_max f g) ` X) = max (Sup (f ` X)) (Sup (g ` X))\<close> | |
text \<open> | |
Explanation: Let \<^term>\<open>X\<close> be a nonempty set. Two supremum over \<^term>\<open>X\<close> of the maximum of two | |
real-value functions is equal to the maximum of their suprema over \<^term>\<open>X\<close>, provided that the | |
functions are bounded above on \<^term>\<open>X\<close>. | |
\<close> | |
proof(cases \<open>Sup (f ` X) \<ge> Sup (g ` X)\<close>) | |
case True thus ?thesis by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_left) | |
next | |
case False | |
have f1: "\<not> 0 \<le> Sup (f ` X) + - 1 * Sup (g ` X)" | |
using False by linarith | |
hence "Sup (Banach_Steinhaus_Missing.pointwise_max f g ` X) = Sup (g ` X)" | |
by (simp add: assms(1) assms(2) assms(3) max_Sup_absorb_right) | |
thus ?thesis | |
using f1 by linarith | |
qed | |
lemma identity_telescopic: | |
fixes x :: \<open>_ \<Rightarrow> 'a::real_normed_vector\<close> | |
assumes \<open>x \<longlonglongrightarrow> l\<close> | |
shows \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) \<longlonglongrightarrow> l - x n\<close> | |
text\<open> | |
Expression of a limit as a telescopic series. | |
Explanation: If \<^term>\<open>x\<close> converges to \<^term>\<open>l\<close> then the sum \<^term>\<open>sum (\<lambda> k. x (Suc k) - x k) {n..N}\<close> | |
converges to \<^term>\<open>l - x n\<close> as \<^term>\<open>N\<close> goes to infinity. | |
\<close> | |
proof- | |
have \<open>(\<lambda> p. x (p + Suc n)) \<longlonglongrightarrow> l\<close> | |
using \<open>x \<longlonglongrightarrow> l\<close> by (rule LIMSEQ_ignore_initial_segment) | |
hence \<open>(\<lambda> p. x (Suc n + p)) \<longlonglongrightarrow> l\<close> | |
by (simp add: add.commute) | |
hence \<open>(\<lambda> p. x (Suc (n + p))) \<longlonglongrightarrow> l\<close> | |
by simp | |
hence \<open>(\<lambda> t. (- (x n)) + (\<lambda> p. x (Suc (n + p))) t ) \<longlonglongrightarrow> (- (x n)) + l\<close> | |
using tendsto_add_const_iff by metis | |
hence f1: \<open>(\<lambda> p. x (Suc (n + p)) - x n)\<longlonglongrightarrow> l - x n\<close> | |
by simp | |
have \<open>sum (\<lambda> k. x (Suc k) - x k) {n..n+p} = x (Suc (n+p)) - x n\<close> for p | |
by (simp add: sum_Suc_diff) | |
moreover have \<open>(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + t) | |
= (\<lambda> p. sum (\<lambda> k. x (Suc k) - x k) {n..n+p}) t\<close> for t | |
by blast | |
ultimately have \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (n + p)) \<longlonglongrightarrow> l - x n\<close> | |
using f1 by simp | |
hence \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) (p + n)) \<longlonglongrightarrow> l - x n\<close> | |
by (simp add: add.commute) | |
hence \<open>(\<lambda> p. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) p) \<longlonglongrightarrow> l - x n\<close> | |
using Topological_Spaces.LIMSEQ_offset[where f = "(\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N})" | |
and a = "l - x n" and k = n] by blast | |
hence \<open>(\<lambda> M. (\<lambda> N. sum (\<lambda> k. x (Suc k) - x k) {n..N}) M) \<longlonglongrightarrow> l - x n\<close> | |
by simp | |
thus ?thesis by blast | |
qed | |
lemma bound_Cauchy_to_lim: | |
assumes \<open>y \<longlonglongrightarrow> x\<close> and \<open>\<And>n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> and \<open>y 0 = 0\<close> and \<open>c < 1\<close> | |
shows \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close> | |
text\<open> | |
Inequality about a sequence of approximations assuming that the sequence of differences is bounded | |
by a geometric progression. | |
Explanation: Let \<^term>\<open>y\<close> be a sequence converging to \<^term>\<open>x\<close>. | |
If \<^term>\<open>y\<close> satisfies the inequality \<open>\<parallel>y (Suc n) - y n\<parallel> \<le> c ^ n\<close> for some \<^term>\<open>c < 1\<close> and | |
assuming \<^term>\<open>y 0 = 0\<close> then the inequality \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * c ^ n\<close> holds. | |
\<close> | |
proof- | |
have \<open>c \<ge> 0\<close> | |
using \<open>\<And> n. \<parallel>y (Suc n) - y n\<parallel> \<le> c^n\<close> by (smt norm_imp_pos_and_ge power_Suc0_right) | |
have norm_1: \<open>norm (\<Sum>k = Suc n..N. y (Suc k) - y k) \<le> (c ^ Suc n)/(1 - c)\<close> for N | |
proof(cases \<open>N < Suc n\<close>) | |
case True | |
hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> = 0\<close> | |
by auto | |
thus ?thesis using \<open>c \<ge> 0\<close> \<open>c < 1\<close> by auto | |
next | |
case False | |
hence \<open>N \<ge> Suc n\<close> | |
by auto | |
have \<open>c^(Suc N) \<ge> 0\<close> | |
using \<open>c \<ge> 0\<close> by auto | |
have \<open>1 - c > 0\<close> | |
by (simp add: \<open>c < 1\<close>) | |
hence \<open>(1 - c)/(1 - c) = 1\<close> | |
by auto | |
have \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (\<lambda>k. \<parallel>y (Suc k) - y k\<parallel>) {Suc n .. N})\<close> | |
by (simp add: sum_norm_le) | |
hence \<open>\<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> \<le> (sum (power c) {Suc n .. N})\<close> | |
by (simp add: assms(2) sum_norm_le) | |
hence \<open>(1 - c) * \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel> | |
\<le> (1 - c) * (sum (power c) {Suc n .. N})\<close> | |
using \<open>0 < 1 - c\<close> mult_le_cancel_iff2 by blast | |
also have \<open>\<dots> = c^(Suc n) - c^(Suc N)\<close> | |
using Set_Interval.sum_gp_multiplied \<open>Suc n \<le> N\<close> by blast | |
also have \<open>\<dots> \<le> c^(Suc n)\<close> | |
using \<open>c^(Suc N) \<ge> 0\<close> by auto | |
finally have \<open>(1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> c ^ Suc n\<close> | |
by blast | |
hence \<open>((1 - c) * \<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel>)/(1 - c) | |
\<le> (c ^ Suc n)/(1 - c)\<close> | |
using \<open>0 < 1 - c\<close> by (smt divide_right_mono) | |
thus \<open>\<parallel>\<Sum>k = Suc n..N. y (Suc k) - y k\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close> | |
using \<open>0 < 1 - c\<close> by auto | |
qed | |
have \<open>(\<lambda> N. (sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N})) \<longlonglongrightarrow> x - y (Suc n)\<close> | |
by (metis (no_types) \<open>y \<longlonglongrightarrow> x\<close> identity_telescopic) | |
hence \<open>(\<lambda> N. \<parallel>sum (\<lambda>k. y (Suc k) - y k) {Suc n .. N}\<parallel>) \<longlonglongrightarrow> \<parallel>x - y (Suc n)\<parallel>\<close> | |
using tendsto_norm by blast | |
hence \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close> | |
using norm_1 Lim_bounded by blast | |
hence \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c ^ Suc n)/(1 - c)\<close> | |
by auto | |
moreover have \<open>(c ^ Suc n)/(1 - c) = (c / (1 - c)) * (c ^ n)\<close> | |
by (simp add: divide_inverse_commute) | |
ultimately show \<open>\<parallel>x - y (Suc n)\<parallel> \<le> (c / (1 - c)) * (c ^ n)\<close> by linarith | |
qed | |
lemma onorm_open_ball: | |
includes notation_norm | |
shows \<open>\<parallel>f\<parallel> = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close> | |
text \<open> | |
Explanation: Let \<^term>\<open>f\<close> be a bounded linear operator. The operator norm of \<^term>\<open>f\<close> is the | |
supremum of \<^term>\<open>norm (f x)\<close> for \<^term>\<open>x\<close> such that \<^term>\<open>norm x < 1\<close>. | |
\<close> | |
proof(cases \<open>(UNIV::'a set) = 0\<close>) | |
case True | |
hence \<open>x = 0\<close> for x::'a | |
by auto | |
hence \<open>f *\<^sub>v x = 0\<close> for x | |
by (metis (full_types) blinfun.zero_right) | |
hence \<open>\<parallel>f\<parallel> = 0\<close> | |
by (simp add: blinfun_eqI zero_blinfun.rep_eq) | |
have \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = {0}\<close> | |
by (smt Collect_cong \<open>\<And>x. f *\<^sub>v x = 0\<close> norm_zero singleton_conv) | |
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close> | |
by simp | |
thus ?thesis using \<open>\<parallel>f\<parallel> = 0\<close> by auto | |
next | |
case False | |
hence \<open>(UNIV::'a set) \<noteq> 0\<close> | |
by simp | |
have nonnegative: \<open>\<parallel>f *\<^sub>v x\<parallel> \<ge> 0\<close> for x | |
by simp | |
have \<open>\<exists> x::'a. x \<noteq> 0\<close> | |
using \<open>UNIV \<noteq> 0\<close> by auto | |
then obtain x::'a where \<open>x \<noteq> 0\<close> | |
by blast | |
hence \<open>\<parallel>x\<parallel> \<noteq> 0\<close> | |
by auto | |
define y where \<open>y = x /\<^sub>R \<parallel>x\<parallel>\<close> | |
have \<open>norm y = \<parallel> x /\<^sub>R \<parallel>x\<parallel> \<parallel>\<close> | |
unfolding y_def by auto | |
also have \<open>\<dots> = \<parallel>x\<parallel> /\<^sub>R \<parallel>x\<parallel>\<close> | |
by auto | |
also have \<open>\<dots> = 1\<close> | |
using \<open>\<parallel>x\<parallel> \<noteq> 0\<close> by auto | |
finally have \<open>\<parallel>y\<parallel> = 1\<close> | |
by blast | |
hence norm_1_non_empty: \<open>{ \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<noteq> {}\<close> | |
by blast | |
have norm_1_bounded: \<open>bdd_above { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
unfolding bdd_above_def apply auto | |
by (metis norm_blinfun) | |
have norm_less_1_non_empty: \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<noteq> {}\<close> | |
by (metis (mono_tags, lifting) Collect_empty_eq_bot bot_empty_eq empty_iff norm_zero | |
zero_less_one) | |
have norm_less_1_bounded: \<open>bdd_above {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
proof- | |
have \<open>\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v (a r)\<parallel> \<le> r\<close> for a :: "real \<Rightarrow> 'a" | |
proof- | |
obtain r :: "('a \<Rightarrow>\<^sub>L 'b) \<Rightarrow> real" where | |
"\<And>f x. 0 \<le> r f \<and> (bounded_linear f \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> \<parallel>x\<parallel> * r f)" | |
using bounded_linear.nonneg_bounded by moura | |
have \<open>\<not> \<parallel>f\<parallel> < 0\<close> | |
by simp | |
hence "(\<exists>r. \<parallel>f\<parallel> * \<parallel>a r\<parallel> \<le> r) \<or> (\<exists>r. \<parallel>a r\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v a r\<parallel> \<le> r)" | |
by (meson less_eq_real_def mult_le_cancel_left2) | |
thus ?thesis using dual_order.trans norm_blinfun by blast | |
qed | |
hence \<open>\<exists> M. \<forall> x. \<parallel>x\<parallel> < 1 \<longrightarrow> \<parallel>f *\<^sub>v x\<parallel> \<le> M\<close> | |
by metis | |
thus ?thesis by auto | |
qed | |
have Sup_non_neg: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<ge> 0\<close> | |
by (smt Collect_empty_eq cSup_upper mem_Collect_eq nonnegative norm_1_bounded norm_1_non_empty) | |
have \<open>{0::real} \<noteq> {}\<close> | |
by simp | |
have \<open>bdd_above {0::real}\<close> | |
by simp | |
show \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
proof(cases \<open>\<forall>x. f *\<^sub>v x = 0\<close>) | |
case True | |
have \<open>\<parallel>f *\<^sub>v x\<parallel> = 0\<close> for x | |
by (simp add: True) | |
hence \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<subseteq> {0}\<close> | |
by blast | |
moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } \<supseteq> {0}\<close> | |
using calculation norm_less_1_non_empty by fastforce | |
ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = {0}\<close> | |
by blast | |
hence Sup1: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 } = 0\<close> | |
by simp | |
have \<open>\<parallel>f\<parallel> = 0\<close> | |
by (simp add: True blinfun_eqI) | |
moreover have \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} = 0\<close> | |
using Sup1 by blast | |
ultimately show ?thesis by simp | |
next | |
case False | |
have norm_f_eq_leq: \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<Longrightarrow> | |
y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for y | |
proof- | |
assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> = 1\<close> | |
by blast | |
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> = 1\<close> | |
by auto | |
define y' where \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R y\<close> for n | |
have \<open>y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n | |
proof- | |
have \<open>y' n = (1 - (inverse (real (Suc n)))) *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close> | |
using y'_def \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> by blast | |
also have \<open>... = \<bar>(1 - (inverse (real (Suc n))))\<bar> *\<^sub>R \<parallel>f *\<^sub>v x\<parallel>\<close> | |
by (metis (mono_tags, opaque_lifting) \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> abs_1 abs_le_self_iff abs_of_nat | |
abs_of_nonneg add_diff_cancel_left' add_eq_if cancel_comm_monoid_add_class.diff_cancel | |
diff_ge_0_iff_ge eq_iff_diff_eq_0 inverse_1 inverse_le_iff_le nat.distinct(1) of_nat_0 | |
of_nat_Suc of_nat_le_0_iff zero_less_abs_iff zero_neq_one) | |
also have \<open>... = \<parallel>f *\<^sub>v ((1 - (inverse (real (Suc n)))) *\<^sub>R x)\<parallel>\<close> | |
by (simp add: blinfun.scaleR_right) | |
finally have y'_1: \<open>y' n = \<parallel>f *\<^sub>v ( (1 - (inverse (real (Suc n)))) *\<^sub>R x)\<parallel>\<close> | |
by blast | |
have \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> = (1 - (inverse (real (Suc n)))) * \<parallel>x\<parallel>\<close> | |
by (simp add: linordered_field_class.inverse_le_1_iff) | |
hence \<open>\<parallel>(1 - (inverse (Suc n))) *\<^sub>R x\<parallel> < 1\<close> | |
by (simp add: \<open>\<parallel>x\<parallel> = 1\<close>) | |
thus ?thesis using y'_1 by blast | |
qed | |
have \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) ) \<longlonglongrightarrow> 1\<close> | |
using Limits.LIMSEQ_inverse_real_of_nat_add_minus by simp | |
hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> 1 *\<^sub>R y\<close> | |
using Limits.tendsto_scaleR by blast | |
hence \<open>(\<lambda>n. (1 - (inverse (real (Suc n)))) *\<^sub>R y) \<longlonglongrightarrow> y\<close> | |
by simp | |
hence \<open>(\<lambda>n. y' n) \<longlonglongrightarrow> y\<close> | |
using y'_def by simp | |
hence \<open>y' \<longlonglongrightarrow> y\<close> | |
by simp | |
have \<open>y' n \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> for n | |
using cSup_upper \<open>\<And>n. y' n \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> norm_less_1_bounded by blast | |
hence \<open>y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
using \<open>y' \<longlonglongrightarrow> y\<close> Topological_Spaces.Sup_lim by (meson LIMSEQ_le_const2) | |
thus ?thesis by blast | |
qed | |
hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
by (metis (lifting) cSup_least norm_1_non_empty) | |
have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<Longrightarrow> y \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> for y | |
proof(cases \<open>y = 0\<close>) | |
case True thus ?thesis by (simp add: Sup_non_neg) | |
next | |
case False | |
hence \<open>y \<noteq> 0\<close> by blast | |
assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
hence \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> \<and> \<parallel>x\<parallel> < 1\<close> | |
by blast | |
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> and \<open>\<parallel>x\<parallel> < 1\<close> | |
by blast | |
have \<open>(1/\<parallel>x\<parallel>) * y = (1/\<parallel>x\<parallel>) * \<parallel>f x\<parallel>\<close> | |
by (simp add: \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close>) | |
also have \<open>... = \<bar>1/\<parallel>x\<parallel>\<bar> * \<parallel>f *\<^sub>v x\<parallel>\<close> | |
by simp | |
also have \<open>... = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close> | |
by simp | |
also have \<open>... = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close> | |
by (simp add: blinfun.scaleR_right) | |
finally have \<open>(1/\<parallel>x\<parallel>) * y = \<parallel>f *\<^sub>v ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close> | |
by blast | |
have \<open>x \<noteq> 0\<close> | |
using \<open>y \<noteq> 0\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> blinfun.zero_right by auto | |
have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = \<bar> (1/\<parallel>x\<parallel>) \<bar> * \<parallel>x\<parallel>\<close> | |
by simp | |
also have \<open>... = (1/\<parallel>x\<parallel>) * \<parallel>x\<parallel>\<close> | |
by simp | |
finally have \<open>\<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R x\<parallel> = 1\<close> | |
using \<open>x \<noteq> 0\<close> by simp | |
hence \<open>(1/\<parallel>x\<parallel>) * y \<in> { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
using \<open>1 / \<parallel>x\<parallel> * y = \<parallel>f *\<^sub>v (1 / \<parallel>x\<parallel>) *\<^sub>R x\<parallel>\<close> by blast | |
hence \<open>(1/\<parallel>x\<parallel>) * y \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
by (simp add: cSup_upper norm_1_bounded) | |
moreover have \<open>y \<le> (1/\<parallel>x\<parallel>) * y\<close> | |
by (metis \<open>\<parallel>x\<parallel> < 1\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> mult_le_cancel_right1 norm_not_less_zero | |
order.strict_implies_order \<open>x \<noteq> 0\<close> less_divide_eq_1_pos zero_less_norm_iff) | |
ultimately show ?thesis by linarith | |
qed | |
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
by (smt cSup_least norm_less_1_non_empty) | |
hence \<open>Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1} = Sup { \<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1}\<close> | |
using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. norm x = 1} \<le> Sup { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> by linarith | |
have f1: \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True}\<close> | |
by (simp add: full_SetCompr_eq) | |
have \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} \<Longrightarrow> y \<in> { \<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close> | |
for y | |
proof- | |
assume \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> show ?thesis | |
proof(cases \<open>y = 0\<close>) | |
case True thus ?thesis by simp | |
next | |
case False | |
have \<open>\<exists> x. y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> | |
using \<open>y \<in> { \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> by auto | |
then obtain x where \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> | |
by blast | |
hence \<open>y = \<bar>(1/\<parallel>x\<parallel>)\<bar> * \<parallel> f *\<^sub>v x \<parallel>\<close> | |
by simp | |
hence \<open>y = \<parallel>(1/\<parallel>x\<parallel>) *\<^sub>R (f *\<^sub>v x)\<parallel>\<close> | |
by simp | |
hence \<open>y = \<parallel>f ((1/\<parallel>x\<parallel>) *\<^sub>R x)\<parallel>\<close> | |
by (simp add: blinfun.scaleR_right) | |
moreover have \<open>\<parallel> (1/\<parallel>x\<parallel>) *\<^sub>R x \<parallel> = 1\<close> | |
using False \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> by auto | |
ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> | |
by blast | |
thus ?thesis by blast | |
qed | |
qed | |
moreover have \<open>y \<in> {\<parallel>f x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0} \<Longrightarrow> y \<in> {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True}\<close> | |
for y | |
proof(cases \<open>y = 0\<close>) | |
case True thus ?thesis by auto | |
next | |
case False | |
hence \<open>y \<notin> {0}\<close> | |
by simp | |
moreover assume \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close> | |
ultimately have \<open>y \<in> {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> | |
by simp | |
then obtain x where \<open>\<parallel>x\<parallel> = 1\<close> and \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> | |
by auto | |
have \<open>y = \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>\<close> using \<open>\<parallel>x\<parallel> = 1\<close> \<open>y = \<parallel>f *\<^sub>v x\<parallel>\<close> | |
by simp | |
thus ?thesis by auto | |
qed | |
ultimately have \<open>{\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}\<close> | |
by blast | |
hence \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close> | |
by simp | |
have "\<And>r s. \<not> (r::real) \<le> s \<or> sup r s = s" | |
by (metis (lifting) sup.absorb_iff1 sup_commute) | |
hence \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {(0::real)}) | |
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0::real})\<close> | |
using \<open>0 \<le> Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> \<open>bdd_above {0}\<close> \<open>{0} \<noteq> {}\<close> cSup_singleton | |
cSup_union_distrib max.absorb_iff1 sup_commute norm_1_bounded norm_1_non_empty | |
by (metis (no_types, lifting) ) | |
moreover have \<open>Sup {(0::real)} = (0::real)\<close> | |
by simp | |
ultimately have \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}\<close> | |
using Sup_non_neg by linarith | |
moreover have \<open>Sup ( {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) | |
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0}) \<close> | |
using Sup_non_neg \<open>Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0}) | |
= max (Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1}) (Sup {0})\<close> | |
by auto | |
ultimately have f2: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> | x. True} = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
using \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel> |x. True} = Sup ({\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} \<union> {0})\<close> by linarith | |
have \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> = 1}\<close> | |
using f1 f2 by linarith | |
hence \<open>(SUP x. \<parallel>f *\<^sub>v x\<parallel> / \<parallel>x\<parallel>) = Sup {\<parallel>f *\<^sub>v x\<parallel> | x. \<parallel>x\<parallel> < 1 }\<close> | |
by (simp add: \<open>Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> = 1} = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close>) | |
thus ?thesis apply transfer by (simp add: onorm_def) | |
qed | |
qed | |
lemma onorm_r: | |
includes notation_norm | |
assumes \<open>r > 0\<close> | |
shows \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close> | |
text \<open> | |
Explanation: The norm of \<^term>\<open>f\<close> is \<^term>\<open>1/r\<close> of the supremum of the norm of \<^term>\<open>f *\<^sub>v x\<close> for | |
\<^term>\<open>x\<close> in the ball of radius \<^term>\<open>r\<close> centered at the origin. | |
\<close> | |
proof- | |
have \<open>\<parallel>f\<parallel> = Sup {\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1}\<close> | |
using onorm_open_ball by blast | |
moreover have \<open>{\<parallel>f *\<^sub>v x\<parallel> |x. \<parallel>x\<parallel> < 1} = (\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1)\<close> | |
unfolding ball_def by auto | |
ultimately have onorm_f: \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 1))\<close> | |
by simp | |
have s2: \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> for x | |
proof- | |
assume \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> | |
hence \<open>\<exists> t. x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel> \<and> \<parallel>t\<parallel> < 1\<close> | |
by auto | |
then obtain t where \<open>x = r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>\<close> and \<open>\<parallel>t\<parallel> < 1\<close> | |
by blast | |
define y where \<open>y = x /\<^sub>R r\<close> | |
have \<open>x = r * (inverse r * x)\<close> | |
using \<open>x = r *\<^sub>R norm (f t)\<close> by auto | |
hence \<open>x - (r * (inverse r * x)) \<le> 0\<close> | |
by linarith | |
hence \<open>x \<le> r * (x /\<^sub>R r)\<close> | |
by auto | |
have \<open>y \<in> (\<lambda>k. \<parallel>f *\<^sub>v k\<parallel>) ` ball 0 1\<close> | |
unfolding y_def by (smt \<open>x \<in> (\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> assms image_iff | |
inverse_inverse_eq pos_le_divideR_eq positive_imp_inverse_positive) | |
moreover have \<open>x \<le> r * y\<close> | |
using \<open>x \<le> r * (x /\<^sub>R r)\<close> y_def by blast | |
ultimately have y_norm_f: \<open>y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close> | |
by blast | |
have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close> | |
by simp | |
moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> | |
by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above | |
bounded_norm_comp) | |
moreover have \<open>\<exists> y. y \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<and> x \<le> r * y\<close> | |
using y_norm_f by blast | |
ultimately show ?thesis | |
by (smt \<open>0 < r\<close> cSup_upper ordered_comm_semiring_class.comm_mult_left_mono) | |
qed | |
have s3: \<open>(\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y) \<Longrightarrow> | |
r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y\<close> for y | |
proof- | |
assume \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close> | |
have x_leq: \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y / r\<close> for x | |
proof- | |
assume \<open>x \<in> (\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> | |
then obtain t where \<open>t \<in> ball (0::'a) 1\<close> and \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close> | |
by auto | |
define x' where \<open>x' = r *\<^sub>R x\<close> | |
have \<open>x' = r * \<parallel>f *\<^sub>v t\<parallel>\<close> | |
by (simp add: \<open>x = \<parallel>f *\<^sub>v t\<parallel>\<close> x'_def) | |
hence \<open>x' \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1\<close> | |
using \<open>t \<in> ball (0::'a) 1\<close> by auto | |
hence \<open>x' \<le> y\<close> | |
using \<open>\<And>x. x \<in> (\<lambda>t. r * \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<Longrightarrow> x \<le> y\<close> by blast | |
thus \<open>x \<le> y / r\<close> | |
unfolding x'_def using \<open>r > 0\<close> by (simp add: mult.commute pos_le_divide_eq) | |
qed | |
have \<open>(\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1 \<noteq> {}\<close> | |
by simp | |
moreover have \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> | |
by (simp add: bounded_linear_image blinfun.bounded_linear_right bounded_imp_bdd_above | |
bounded_norm_comp) | |
ultimately have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1) \<le> y/r\<close> | |
using x_leq by (simp add: \<open>bdd_above ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 1)\<close> cSup_least) | |
thus ?thesis using \<open>r > 0\<close> | |
by (smt divide_strict_right_mono nonzero_mult_div_cancel_left) | |
qed | |
have norm_scaleR: \<open>norm \<circ> ((*\<^sub>R) r) = ((*\<^sub>R) \<bar>r\<bar>) \<circ> (norm::'a \<Rightarrow> real)\<close> | |
by auto | |
have f_x1: \<open>f (r *\<^sub>R x) = r *\<^sub>R f x\<close> for x | |
by (simp add: blinfun.scaleR_right) | |
have \<open>ball (0::'a) r = ((*\<^sub>R) r) ` (ball 0 1)\<close> | |
by (smt assms ball_scale nonzero_mult_div_cancel_left right_inverse_eq scale_zero_right) | |
hence \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 r)) = Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (((*\<^sub>R) r) ` (ball 0 1)))\<close> | |
by simp | |
also have \<open>\<dots> = Sup (((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) \<circ> ((*\<^sub>R) r)) ` (ball 0 1))\<close> | |
using Sup.SUP_image by auto | |
also have \<open>\<dots> = Sup ((\<lambda>t. \<parallel>f *\<^sub>v (r *\<^sub>R t)\<parallel>) ` (ball 0 1))\<close> | |
using f_x1 by (simp add: comp_assoc) | |
also have \<open>\<dots> = Sup ((\<lambda>t. \<bar>r\<bar> *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close> | |
using norm_scaleR f_x1 by auto | |
also have \<open>\<dots> = Sup ((\<lambda>t. r *\<^sub>R \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close> | |
using \<open>r > 0\<close> by auto | |
also have \<open>\<dots> = r * Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` (ball 0 1))\<close> | |
apply (rule cSup_eq_non_empty) apply simp using s2 apply auto using s3 by auto | |
also have \<open>\<dots> = r * \<parallel>f\<parallel>\<close> | |
using onorm_f by auto | |
finally have \<open>Sup ((\<lambda>t. \<parallel>f *\<^sub>v t\<parallel>) ` ball 0 r) = r * \<parallel>f\<parallel>\<close> | |
by blast | |
thus \<open>\<parallel>f\<parallel> = Sup ((\<lambda>x. \<parallel>f *\<^sub>v x\<parallel>) ` (ball 0 r)) / r\<close> using \<open>r > 0\<close> by simp | |
qed | |
text\<open>Pointwise convergence\<close> | |
definition pointwise_convergent_to :: | |
\<open>( nat \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) ) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool\<close> | |
(\<open>((_)/ \<midarrow>pointwise\<rightarrow> (_))\<close> [60, 60] 60) where | |
\<open>pointwise_convergent_to x l = (\<forall> t::'a. (\<lambda> n. (x n) t) \<longlonglongrightarrow> l t)\<close> | |
lemma linear_limit_linear: | |
fixes f :: \<open>_ \<Rightarrow> ('a::real_vector \<Rightarrow> 'b::real_normed_vector)\<close> | |
assumes \<open>\<And>n. linear (f n)\<close> and \<open>f \<midarrow>pointwise\<rightarrow> F\<close> | |
shows \<open>linear F\<close> | |
text\<open> | |
Explanation: If a family of linear operators converges pointwise, then the limit is also a linear | |
operator. | |
\<close> | |
proof | |
show "F (x + y) = F x + F y" for x y | |
proof- | |
have "\<forall>a. F a = lim (\<lambda>n. f n a)" | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by (metis (full_types) limI) | |
moreover have "\<forall>f b c g. (lim (\<lambda>n. g n + f n) = (b::'b) + c \<or> \<not> f \<longlonglongrightarrow> c) \<or> \<not> g \<longlonglongrightarrow> b" | |
by (metis (no_types) limI tendsto_add) | |
moreover have "\<And>a. (\<lambda>n. f n a) \<longlonglongrightarrow> F a" | |
using assms(2) pointwise_convergent_to_def by force | |
ultimately have | |
lim_sum: \<open>lim (\<lambda> n. (f n) x + (f n) y) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close> | |
by metis | |
have \<open>(f n) (x + y) = (f n) x + (f n) y\<close> for n | |
using \<open>\<And> n. linear (f n)\<close> unfolding linear_def using Real_Vector_Spaces.linear_iff assms(1) | |
by auto | |
hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x + (f n) y)\<close> | |
by simp | |
hence \<open>lim (\<lambda> n. (f n) (x + y)) = lim (\<lambda> n. (f n) x) + lim (\<lambda> n. (f n) y)\<close> | |
using lim_sum by simp | |
moreover have \<open>(\<lambda> n. (f n) (x + y)) \<longlonglongrightarrow> F (x + y)\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast | |
moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast | |
moreover have \<open>(\<lambda> n. (f n) y) \<longlonglongrightarrow> F y\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast | |
ultimately show ?thesis | |
by (metis limI) | |
qed | |
show "F (r *\<^sub>R x) = r *\<^sub>R F x" for r and x | |
proof- | |
have \<open>(f n) (r *\<^sub>R x) = r *\<^sub>R (f n) x\<close> for n | |
using \<open>\<And> n. linear (f n)\<close> | |
by (simp add: Real_Vector_Spaces.linear_def real_vector.linear_scale) | |
hence \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close> | |
by simp | |
have \<open>convergent (\<lambda> n. (f n) x)\<close> | |
by (metis assms(2) convergentI pointwise_convergent_to_def) | |
moreover have \<open>isCont (\<lambda> t::'b. r *\<^sub>R t) tt\<close> for tt | |
by (simp add: bounded_linear_scaleR_right) | |
ultimately have \<open>lim (\<lambda> n. r *\<^sub>R ((f n) x)) = r *\<^sub>R lim (\<lambda> n. (f n) x)\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def | |
by (metis (mono_tags) isCont_tendsto_compose limI) | |
hence \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = r *\<^sub>R lim (\<lambda> n. (f n) x)\<close> | |
using \<open>lim (\<lambda> n. (f n) (r *\<^sub>R x)) = lim (\<lambda> n. r *\<^sub>R (f n) x)\<close> by simp | |
moreover have \<open>(\<lambda> n. (f n) x) \<longlonglongrightarrow> F x\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast | |
moreover have \<open>(\<lambda> n. (f n) (r *\<^sub>R x)) \<longlonglongrightarrow> F (r *\<^sub>R x)\<close> | |
using \<open>f \<midarrow>pointwise\<rightarrow> F\<close> unfolding pointwise_convergent_to_def by blast | |
ultimately show ?thesis | |
by (metis limI) | |
qed | |
qed | |
lemma non_Cauchy_unbounded: | |
fixes a ::\<open>_ \<Rightarrow> real\<close> | |
assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>e > 0\<close> | |
and \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close> | |
shows \<open>(\<lambda>n. (sum a {0..n})) \<longlonglongrightarrow> \<infinity>\<close> | |
text\<open> | |
Explanation: If the sequence of partial sums of nonnegative terms is not Cauchy, then it converges | |
to infinite. | |
\<close> | |
proof- | |
define S::"ereal set" where \<open>S = range (\<lambda>n. sum a {0..n})\<close> | |
have \<open>\<exists>s\<in>S. k*e \<le> s\<close> for k::nat | |
proof(induction k) | |
case 0 | |
from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close> | |
obtain m n where \<open>m \<ge> 0\<close> and \<open>n \<ge> 0\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close> by blast | |
have \<open>n < Suc n\<close> | |
by simp | |
hence \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close> | |
using Set_Interval.ivl_disj_un(7) \<open>n < m\<close> by auto | |
moreover have \<open>finite {0..n}\<close> | |
by simp | |
moreover have \<open>finite {Suc n..m}\<close> | |
by simp | |
moreover have \<open>{0..n} \<inter> {Suc n..m} = {}\<close> | |
by simp | |
ultimately have \<open>sum a {0..n} + sum a {Suc n..m} = sum a {0..m}\<close> | |
by (metis sum.union_disjoint) | |
moreover have \<open>sum a {Suc n..m} > 0\<close> | |
using \<open>e > 0\<close> \<open>sum a {Suc n..m} \<ge> e\<close> by linarith | |
moreover have \<open>sum a {0..n} \<ge> 0\<close> | |
by (simp add: assms(1) sum_nonneg) | |
ultimately have \<open>sum a {0..m} > 0\<close> | |
by linarith | |
moreover have \<open>sum a {0..m} \<in> S\<close> | |
unfolding S_def by blast | |
ultimately have \<open>\<exists>s\<in>S. 0 \<le> s\<close> | |
using ereal_less_eq(5) by fastforce | |
thus ?case | |
by (simp add: zero_ereal_def) | |
next | |
case (Suc k) | |
assume \<open>\<exists>s\<in>S. k*e \<le> s\<close> | |
then obtain s where \<open>s\<in>S\<close> and \<open>ereal (k * e) \<le> s\<close> | |
by blast | |
have \<open>\<exists>N. s = sum a {0..N}\<close> | |
using \<open>s\<in>S\<close> unfolding S_def by blast | |
then obtain N where \<open>s = sum a {0..N}\<close> | |
by blast | |
from \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close> | |
obtain m n where \<open>m \<ge> Suc N\<close> and \<open>n \<ge> Suc N\<close> and \<open>m > n\<close> and \<open>sum a {Suc n..m} \<ge> e\<close> | |
by blast | |
have \<open>finite {Suc N..n}\<close> | |
by simp | |
moreover have \<open>finite {Suc n..m}\<close> | |
by simp | |
moreover have \<open>{Suc N..n} \<union> {Suc n..m} = {Suc N..m}\<close> | |
using Set_Interval.ivl_disj_un | |
by (smt \<open>Suc N \<le> n\<close> \<open>n < m\<close> atLeastSucAtMost_greaterThanAtMost less_imp_le_nat) | |
moreover have \<open>{} = {Suc N..n} \<inter> {Suc n..m}\<close> | |
by simp | |
ultimately have \<open>sum a {Suc N..m} = sum a {Suc N..n} + sum a {Suc n..m}\<close> | |
by (metis sum.union_disjoint) | |
moreover have \<open>sum a {Suc N..n} \<ge> 0\<close> | |
using \<open>\<And>n. a n \<ge> 0\<close> by (simp add: sum_nonneg) | |
ultimately have \<open>sum a {Suc N..m} \<ge> e\<close> | |
using \<open>e \<le> sum a {Suc n..m}\<close> by linarith | |
have \<open>finite {0..N}\<close> | |
by simp | |
have \<open>finite {Suc N..m}\<close> | |
by simp | |
moreover have \<open>{0..N} \<union> {Suc N..m} = {0..m}\<close> | |
using Set_Interval.ivl_disj_un(7) \<open>Suc N \<le> m\<close> by auto | |
moreover have \<open>{0..N} \<inter> {Suc N..m} = {}\<close> | |
by simp | |
ultimately have \<open>sum a {0..N} + sum a {Suc N..m} = sum a {0..m}\<close> | |
by (metis \<open>finite {0..N}\<close> sum.union_disjoint) | |
hence \<open>e + k * e \<le> sum a {0..m}\<close> | |
using \<open>ereal (real k * e) \<le> s\<close> \<open>s = ereal (sum a {0..N})\<close> \<open>e \<le> sum a {Suc N..m}\<close> by auto | |
moreover have \<open>e + k * e = (Suc k) * e\<close> | |
by (simp add: semiring_normalization_rules(3)) | |
ultimately have \<open>(Suc k) * e \<le> sum a {0..m}\<close> | |
by linarith | |
hence \<open>ereal ((Suc k) * e) \<le> sum a {0..m}\<close> | |
by auto | |
moreover have \<open>sum a {0..m}\<in>S\<close> | |
unfolding S_def by blast | |
ultimately show ?case by blast | |
qed | |
hence \<open>\<exists>s\<in>S. (real n) \<le> s\<close> for n | |
by (meson assms(2) ereal_le_le ex_less_of_nat_mult less_le_not_le) | |
hence \<open>Sup S = \<infinity>\<close> | |
using Sup_le_iff Sup_subset_mono dual_order.strict_trans1 leD less_PInf_Ex_of_nat subsetI | |
by metis | |
hence Sup: \<open>Sup ((range (\<lambda> n. (sum a {0..n})))::ereal set) = \<infinity>\<close> using S_def | |
by blast | |
have \<open>incseq (\<lambda>n. (sum a {..<n}))\<close> | |
using \<open>\<And>n. a n \<ge> 0\<close> using Extended_Real.incseq_sumI by auto | |
hence \<open>incseq (\<lambda>n. (sum a {..< Suc n}))\<close> | |
by (meson incseq_Suc_iff) | |
hence \<open>incseq (\<lambda>n. (sum a {0..n})::ereal)\<close> | |
using incseq_ereal by (simp add: atLeast0AtMost lessThan_Suc_atMost) | |
hence \<open>(\<lambda>n. sum a {0..n}) \<longlonglongrightarrow> Sup (range (\<lambda>n. (sum a {0..n})::ereal))\<close> | |
using LIMSEQ_SUP by auto | |
thus ?thesis using Sup PInfty_neq_ereal by auto | |
qed | |
lemma sum_Cauchy_positive: | |
fixes a ::\<open>_ \<Rightarrow> real\<close> | |
assumes \<open>\<And>n. a n \<ge> 0\<close> and \<open>\<exists>K. \<forall>n. (sum a {0..n}) \<le> K\<close> | |
shows \<open>Cauchy (\<lambda>n. sum a {0..n})\<close> | |
text\<open> | |
Explanation: If a series of nonnegative reals is bounded, then the series is | |
Cauchy. | |
\<close> | |
proof (unfold Cauchy_altdef2, rule, rule) | |
fix e::real | |
assume \<open>e>0\<close> | |
have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> | |
proof(rule classical) | |
assume \<open>\<not>(\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e)\<close> | |
hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> \<not>(sum a {Suc n..m} < e)\<close> | |
by blast | |
hence \<open>\<forall>M. \<exists>m. \<exists>n. m \<ge> M \<and> n \<ge> M \<and> m > n \<and> sum a {Suc n..m} \<ge> e\<close> | |
by fastforce | |
hence \<open>(\<lambda>n. (sum a {0..n}) ) \<longlonglongrightarrow> \<infinity>\<close> | |
using non_Cauchy_unbounded \<open>0 < e\<close> assms(1) by blast | |
from \<open>\<exists>K. \<forall>n. sum a {0..n} \<le> K\<close> | |
obtain K where \<open>\<forall>n. sum a {0..n} \<le> K\<close> | |
by blast | |
from \<open>(\<lambda>n. sum a {0..n}) \<longlonglongrightarrow> \<infinity>\<close> | |
have \<open>\<forall>B. \<exists>N. \<forall>n\<ge>N. (\<lambda> n. (sum a {0..n}) ) n \<ge> B\<close> | |
using Lim_PInfty by simp | |
hence \<open>\<exists>n. (sum a {0..n}) \<ge> K+1\<close> | |
using ereal_less_eq(3) by blast | |
thus ?thesis using \<open>\<forall>n. (sum a {0..n}) \<le> K\<close> by smt | |
qed | |
have \<open>sum a {Suc n..m} = sum a {0..m} - sum a {0..n}\<close> | |
if "m > n" for m n | |
apply (simp add: that atLeast0AtMost) using sum_up_index_split | |
by (smt less_imp_add_positive that) | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close> | |
using \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> by smt | |
from \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close> | |
obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {0..m} - sum a {0..n} < e\<close> | |
by blast | |
moreover have \<open>m > n \<Longrightarrow> sum a {0..m} \<ge> sum a {0..n}\<close> for m n | |
using \<open>\<And> n. a n \<ge> 0\<close> by (simp add: sum_mono2) | |
ultimately have \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close> | |
by auto | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m \<ge> n \<longrightarrow> \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close> | |
by (metis \<open>0 < e\<close> abs_zero cancel_comm_monoid_add_class.diff_cancel diff_is_0_eq' | |
less_irrefl_nat linorder_neqE_nat zero_less_diff) | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. \<bar>sum a {0..m} - sum a {0..n}\<bar> < e\<close> | |
by (metis abs_minus_commute nat_le_linear) | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close> | |
by (simp add: dist_real_def) | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close> by blast | |
thus \<open>\<exists>N. \<forall>n\<ge>N. dist (sum a {0..n}) (sum a {0..N}) < e\<close> by auto | |
qed | |
lemma convergent_series_Cauchy: | |
fixes a::\<open>nat \<Rightarrow> real\<close> and \<phi>::\<open>nat \<Rightarrow> 'a::metric_space\<close> | |
assumes \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> and \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close> | |
shows \<open>Cauchy \<phi>\<close> | |
text\<open> | |
Explanation: Let \<^term>\<open>a\<close> be a real-valued sequence and let \<^term>\<open>\<phi>\<close> be sequence in a metric space. | |
If the partial sums of \<^term>\<open>a\<close> are uniformly bounded and the distance between consecutive terms of \<^term>\<open>\<phi>\<close> | |
are bounded by the sequence \<^term>\<open>a\<close>, then \<^term>\<open>\<phi>\<close> is Cauchy.\<close> | |
proof (unfold Cauchy_altdef2, rule, rule) | |
fix e::real | |
assume \<open>e > 0\<close> | |
have \<open>\<And>k. a k \<ge> 0\<close> | |
using \<open>\<And>n. dist (\<phi> (Suc n)) (\<phi> n) \<le> a n\<close> dual_order.trans zero_le_dist by blast | |
hence \<open>Cauchy (\<lambda>k. sum a {0..k})\<close> | |
using \<open>\<exists>M. \<forall>n. sum a {0..n} \<le> M\<close> sum_Cauchy_positive by blast | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close> | |
unfolding Cauchy_def using \<open>e > 0\<close> by blast | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (sum a {0..m}) (sum a {0..n}) < e\<close> | |
by blast | |
have \<open>dist (sum a {0..m}) (sum a {0..n}) = sum a {Suc n..m}\<close> if \<open>n<m\<close> for m n | |
proof - | |
have \<open>n < Suc n\<close> | |
by simp | |
have \<open>finite {0..n}\<close> | |
by simp | |
moreover have \<open>finite {Suc n..m}\<close> | |
by simp | |
moreover have \<open>{0..n} \<union> {Suc n..m} = {0..m}\<close> | |
using \<open>n < Suc n\<close> \<open>n < m\<close> by auto | |
moreover have \<open>{0..n} \<inter> {Suc n..m} = {}\<close> | |
by simp | |
ultimately have sum_plus: \<open>(sum a {0..n}) + sum a {Suc n..m} = (sum a {0..m})\<close> | |
by (metis sum.union_disjoint) | |
have \<open>dist (sum a {0..m}) (sum a {0..n}) = \<bar>(sum a {0..m}) - (sum a {0..n})\<bar>\<close> | |
using dist_real_def by blast | |
moreover have \<open>(sum a {0..m}) - (sum a {0..n}) = sum a {Suc n..m}\<close> | |
using sum_plus by linarith | |
ultimately show ?thesis | |
by (simp add: \<open>\<And>k. 0 \<le> a k\<close> sum_nonneg) | |
qed | |
hence sum_a: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> | |
by (metis \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (sum a {0..m}) (sum a {0..n}) < e\<close>) | |
obtain M where \<open>\<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {Suc n..m} < e\<close> | |
using sum_a \<open>e > 0\<close> by blast | |
hence \<open>\<forall>m. \<forall>n. Suc m \<ge> Suc M \<and> Suc n \<ge> Suc M \<and> Suc m > Suc n \<longrightarrow> sum a {Suc n..Suc m - 1} < e\<close> | |
by simp | |
hence \<open>\<forall>m\<ge>1. \<forall>n\<ge>1. m \<ge> Suc M \<and> n \<ge> Suc M \<and> m > n \<longrightarrow> sum a {n..m - 1} < e\<close> | |
by (metis Suc_le_D) | |
hence sum_a2: \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> sum a {n..m-1} < e\<close> | |
by (meson add_leE) | |
have \<open>dist (\<phi> (n+p+1)) (\<phi> n) \<le> sum a {n..n+p}\<close> for p n :: nat | |
proof(induction p) | |
case 0 thus ?case by (simp add: assms(2)) | |
next | |
case (Suc p) thus ?case | |
by (smt Suc_eq_plus1 add_Suc_right add_less_same_cancel1 assms(2) dist_self dist_triangle2 | |
gr_implies_not0 sum.cl_ivl_Suc) | |
qed | |
hence \<open>m > n \<Longrightarrow> dist (\<phi> m) (\<phi> n) \<le> sum a {n..m-1}\<close> for m n :: nat | |
by (metis Suc_eq_plus1 Suc_le_D diff_Suc_1 gr0_implies_Suc less_eq_Suc_le less_imp_Suc_add | |
zero_less_Suc) | |
hence \<open>\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. m > n \<longrightarrow> dist (\<phi> m) (\<phi> n) < e\<close> | |
using sum_a2 \<open>e > 0\<close> by smt | |
thus "\<exists>N. \<forall>n\<ge>N. dist (\<phi> n) (\<phi> N) < e" | |
using \<open>0 < e\<close> by fastforce | |
qed | |
unbundle notation_blinfun_apply | |
unbundle no_notation_norm | |
end | |