Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Partially_Filled_Array | |
imports | |
"Refine_Imperative_HOL.IICF_Array_List" | |
Array_SBlit | |
begin | |
section "Partially Filled Arrays" | |
text \<open>An array that is only partially filled. | |
The number of actual elements contained is kept in a second element. | |
This represents a weakened version of the array\_list from IICF.\<close> | |
type_synonym 'a pfarray = "'a array_list" | |
subsection "Operations on Partly Filled Arrays" | |
definition is_pfa where | |
"is_pfa c l \<equiv> \<lambda>(a,n). \<exists>\<^sub>A l'. a \<mapsto>\<^sub>a l' * \<up>(c = length l' \<and> n \<le> c \<and> l = (take n l'))" | |
lemma is_pfa_prec[safe_constraint_rules]: "precise (is_pfa c)" | |
unfolding is_pfa_def[abs_def] | |
apply(rule preciseI) | |
apply(simp split: prod.splits) | |
using preciseD snga_prec by fastforce | |
definition pfa_init where | |
"pfa_init cap v n \<equiv> do { | |
a \<leftarrow> Array.new cap v; | |
return (a,n) | |
}" | |
lemma pfa_init_rule[sep_heap_rules]: "n \<le> N \<Longrightarrow> < emp > pfa_init N x n <is_pfa N (replicate n x)>" | |
by (sep_auto simp: pfa_init_def is_pfa_def) | |
definition pfa_empty where | |
"pfa_empty cap \<equiv> pfa_init cap default 0" | |
lemma pfa_empty_rule[sep_heap_rules]: "< emp > pfa_empty N <is_pfa N []>" | |
by (sep_auto simp: pfa_empty_def is_pfa_def) | |
definition "pfa_length \<equiv> arl_length" | |
lemma pfa_length_rule[sep_heap_rules]: " | |
<is_pfa c l a> | |
pfa_length a | |
<\<lambda>r. is_pfa c l a * \<up>(r=length l)>" | |
by (sep_auto simp: pfa_length_def arl_length_def is_pfa_def) | |
definition "pfa_capacity \<equiv> \<lambda>(a,n). Array.len a | |
" | |
lemma pfa_capacity_rule[sep_heap_rules]: " | |
<is_pfa c l a> | |
pfa_capacity a | |
<\<lambda>r. is_pfa c l a * \<up>(c=r)>" | |
by (sep_auto simp: pfa_capacity_def arl_length_def is_pfa_def) | |
definition "pfa_is_empty \<equiv> arl_is_empty" | |
lemma pfa_is_empty_rule[sep_heap_rules]: " | |
<is_pfa c l a> | |
pfa_is_empty a | |
<\<lambda>r. is_pfa c l a * \<up>(r\<longleftrightarrow>(l=[]))>" | |
by (sep_auto simp: pfa_is_empty_def arl_is_empty_def is_pfa_def) | |
definition "pfa_append \<equiv> \<lambda>(a,n) x. do { | |
Array.upd n x a; | |
return (a,n+1) | |
}" | |
lemma pfa_append_rule[sep_heap_rules]: " | |
n < c \<Longrightarrow> | |
< is_pfa c l (a,n) > | |
pfa_append (a,n) x | |
<\<lambda>(a',n'). is_pfa c (l@[x]) (a',n') * \<up>(a' = a \<and> n' = n+1) >" | |
by (sep_auto | |
simp: pfa_append_def arl_append_def is_pfa_def take_update_last neq_Nil_conv | |
split: prod.splits nat.split) | |
definition "pfa_last \<equiv> arl_last" | |
lemma pfa_last_rule[sep_heap_rules]: " | |
l\<noteq>[] \<Longrightarrow> | |
<is_pfa c l a> | |
pfa_last a | |
<\<lambda>r. is_pfa c l a * \<up>(r=last l)>" | |
by (sep_auto simp: pfa_last_def arl_last_def is_pfa_def last_take_nth_conv) | |
definition pfa_butlast :: "'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where | |
"pfa_butlast \<equiv> \<lambda>(a,n). | |
return (a,n-1) | |
" | |
lemma pfa_butlast_rule[sep_heap_rules]: " | |
<is_pfa c l (a,n)> | |
pfa_butlast (a,n) | |
<\<lambda>(a',n'). is_pfa c (butlast l) (a',n') * \<up>(a' = a)>" | |
by (sep_auto | |
split: prod.splits | |
simp: pfa_butlast_def is_pfa_def butlast_take) | |
definition "pfa_get \<equiv> arl_get" | |
lemma pfa_get_rule[sep_heap_rules]: " | |
i < length l \<Longrightarrow> | |
< is_pfa c l a> | |
pfa_get a i | |
<\<lambda>r. is_pfa c l a * \<up>((l!i) = r)>" | |
by (sep_auto simp: is_pfa_def pfa_get_def arl_get_def split: prod.split) | |
definition "pfa_set \<equiv> arl_set" | |
lemma pfa_set_rule[sep_heap_rules]: " | |
i<length l \<Longrightarrow> | |
<is_pfa c l a> | |
pfa_set a i x | |
<\<lambda>a'. is_pfa c (l[i:=x]) a' * \<up>(a' = a)>" | |
by (sep_auto simp: pfa_set_def arl_set_def is_pfa_def split: prod.split) | |
definition pfa_shrink :: "nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where | |
"pfa_shrink k \<equiv> \<lambda>(a,n). | |
return (a,k) | |
" | |
lemma pfa_shrink_rule[sep_heap_rules]: " | |
k \<le> length xs \<Longrightarrow> | |
< is_pfa c xs (a,n) > | |
pfa_shrink k (a,n) | |
<\<lambda>(a',n'). is_pfa c (take k xs) (a',n') * \<up>(n' = k \<and> a'=a) >" | |
by (sep_auto | |
simp: pfa_shrink_def is_pfa_def min.absorb1 | |
split: prod.splits nat.split) | |
definition pfa_shrink_cap :: "nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> 'a pfarray Heap" where | |
"pfa_shrink_cap k \<equiv> \<lambda>(a,n). do { | |
a' \<leftarrow> array_shrink a k; | |
return (a',min k n) | |
} | |
" | |
lemma pfa_shrink_cap_rule_preserve[sep_heap_rules]: " | |
\<lbrakk>n \<le> k; k \<le> c\<rbrakk> \<Longrightarrow> | |
< is_pfa c l (a,n) > | |
pfa_shrink_cap k (a,n) | |
<\<lambda>a'. is_pfa k l a' >\<^sub>t" | |
by (sep_auto | |
simp: pfa_shrink_cap_def is_pfa_def min.absorb1 min.absorb2 | |
split: prod.splits nat.split) | |
lemma pfa_shrink_cap_rule: " | |
\<lbrakk>k \<le> c\<rbrakk> \<Longrightarrow> | |
< is_pfa c l a > | |
pfa_shrink_cap k a | |
<\<lambda>a'. is_pfa k (take k l) a' >\<^sub>t" | |
by (sep_auto | |
simp: pfa_shrink_cap_def is_pfa_def min.absorb1 min.absorb2 | |
split: prod.splits nat.split dest: mod_starD) | |
definition "array_ensure a s x \<equiv> do { | |
l\<leftarrow>Array.len a; | |
if l\<ge>s then | |
return a | |
else do { | |
a'\<leftarrow>Array.new s x; | |
blit a 0 a' 0 l; | |
return a' | |
} | |
}" | |
lemma array_ensure_rule[sep_heap_rules]: | |
shows " | |
< a\<mapsto>\<^sub>ala > | |
array_ensure a s x | |
<\<lambda>a'. a'\<mapsto>\<^sub>a (la @ replicate (s-length la) x)>\<^sub>t" | |
unfolding array_ensure_def | |
by sep_auto | |
(* Ensure a certain capacity *) | |
definition pfa_ensure :: "'a::{heap,default} pfarray \<Rightarrow> nat \<Rightarrow> 'a pfarray Heap" where | |
"pfa_ensure \<equiv> \<lambda>(a,n) k. do { | |
a' \<leftarrow> array_ensure a k default; | |
return (a',n) | |
} | |
" | |
lemma pfa_ensure_rule[sep_heap_rules]: " | |
< is_pfa c l (a,n) > | |
pfa_ensure (a,n) k | |
<\<lambda>(a',n'). is_pfa (max c k) l (a',n') * \<up>(n' = n \<and> c \<ge> n)>\<^sub>t" | |
by (sep_auto | |
simp: pfa_ensure_def is_pfa_def) | |
definition "pfa_copy \<equiv> arl_copy" | |
lemma pfa_copy_rule[sep_heap_rules]: | |
"< is_pfa c l a > | |
pfa_copy a | |
<\<lambda>r. is_pfa c l a * is_pfa c l r>\<^sub>t" | |
by (sep_auto simp: pfa_copy_def arl_copy_def is_pfa_def) | |
definition pfa_blit :: "'a::heap pfarray \<Rightarrow> nat \<Rightarrow> 'a::heap pfarray \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> unit Heap" where | |
"pfa_blit \<equiv> \<lambda>(src,sn) si (dst,dn) di l. blit src si dst di l" | |
lemma min_nat: "min a (a+b) = (a::nat)" | |
by auto | |
lemma pfa_blit_rule[sep_heap_rules]: | |
assumes LEN: "si+len \<le> sn" "di \<le> dn" "di+len \<le> dc" | |
shows | |
"< is_pfa sc src (srci,sn) | |
* is_pfa dc dst (dsti,dn) > | |
pfa_blit (srci,sn) si (dsti,dn) di len | |
<\<lambda>_. is_pfa sc src (srci,sn) | |
* is_pfa dc (take di dst @ take len (drop si src) @ drop (di+len) dst) (dsti,max (di+len) dn) | |
>" | |
using LEN apply(sep_auto simp add: min_nat is_pfa_def pfa_blit_def min.commute min.absorb1 heap: blit_rule) | |
apply (simp add: min.absorb1 take_drop) | |
apply (simp add: drop_take max_def) | |
done | |
definition pfa_drop :: "('a::heap) pfarray \<Rightarrow> nat \<Rightarrow> 'a pfarray \<Rightarrow> 'a pfarray Heap" where | |
"pfa_drop \<equiv> \<lambda>(src,sn) si (dst,dn). do { | |
blit src si dst 0 (sn-si); | |
return (dst,(sn-si)) | |
} | |
" | |
lemma pfa_drop_rule[sep_heap_rules]: | |
assumes LEN: "k \<le> sn" "(sn-k) \<le> dc" | |
shows | |
"< is_pfa sc src (srci,sn) | |
* is_pfa dc dst (dsti,dn) > | |
pfa_drop (srci,sn) k (dsti,dn) | |
<\<lambda>(dsti',dn'). is_pfa sc src (srci,sn) | |
* is_pfa dc (drop k src) (dsti',dn') | |
* \<up>(dsti' = dsti) | |
>" | |
using LEN apply (sep_auto simp add: drop_take is_pfa_def pfa_drop_def dest!: mod_starD heap: pfa_blit_rule) | |
done | |
definition "pfa_append_grow \<equiv> \<lambda>(a,n) x. do { | |
l \<leftarrow> pfa_capacity (a,n); | |
a' \<leftarrow> if l = n | |
then array_grow a (l+1) x | |
else Array.upd n x a; | |
return (a',n+1) | |
}" | |
lemma pfa_append_grow_full_rule[sep_heap_rules]: "n = c \<Longrightarrow> | |
<is_pfa c l (a,n)> | |
array_grow a (c+1) x | |
<\<lambda>a'. is_pfa (c+1) (l@[x]) (a',n+1)>\<^sub>t" | |
apply(sep_auto simp add: is_pfa_def | |
heap del: array_grow_rule) | |
apply(vcg heap del: array_grow_rule heap add: array_grow_rule[of l "(Suc (length l))" a x]) | |
apply simp | |
apply(rule ent_ex_postI[where ?x="l@[x]"]) | |
apply sep_auto | |
done | |
lemma pfa_append_grow_less_rule: "n < c \<Longrightarrow> | |
<is_pfa c l (a,n)> | |
Array.upd n x a | |
<\<lambda>a'. is_pfa c (l@[x]) (a',n+1)>\<^sub>t" | |
apply(sep_auto simp add: is_pfa_def take_update_last) | |
done | |
lemma pfa_append_grow_rule[sep_heap_rules]: " | |
<is_pfa c l (a,n)> | |
pfa_append_grow (a,n) x | |
<\<lambda>(a',n'). is_pfa (if c = n then c+1 else c) (l@[x]) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t" | |
apply(subst pfa_append_grow_def) | |
apply(rule hoare_triple_preI) | |
apply (sep_auto | |
heap add: pfa_append_grow_full_rule pfa_append_grow_less_rule) | |
apply(sep_auto simp add: is_pfa_def) | |
apply(sep_auto simp add: is_pfa_def) | |
done | |
(* This definition has only one access to the array length *) | |
definition "pfa_append_grow' \<equiv> \<lambda>(a,n) x. do { | |
a' \<leftarrow> pfa_ensure (a,n) (n+1); | |
a'' \<leftarrow> pfa_append a' x; | |
return a'' | |
}" | |
lemma pfa_append_grow'_rule[sep_heap_rules]: " | |
<is_pfa c l (a,n)> | |
pfa_append_grow' (a,n) x | |
<\<lambda>(a',n'). is_pfa (max (n+1) c) (l@[x]) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t" | |
unfolding pfa_append_grow'_def | |
by (sep_auto simp add: max_def) | |
definition "pfa_insert \<equiv> \<lambda>(a,n) i x. do { | |
a' \<leftarrow> array_shr a i 1; | |
a'' \<leftarrow> Array.upd i x a; | |
return (a'',n+1) | |
}" | |
lemma list_update_last: "length ls = Suc i \<Longrightarrow> ls[i:=x] = (take i ls)@[x]" | |
by (metis append_eq_conv_conj length_Suc_rev_conv list_update_length) | |
lemma pfa_insert_rule[sep_heap_rules]: | |
"\<lbrakk>i \<le> n; n < c\<rbrakk> \<Longrightarrow> | |
<is_pfa c l (a,n)> | |
pfa_insert (a,n) i x | |
<\<lambda>(a',n'). is_pfa c (take i l@x#drop i l) (a',n') * \<up>(n' = n+1 \<and> a=a')>" | |
unfolding pfa_insert_def is_pfa_def | |
by (sep_auto simp add: list_update_append1 list_update_last | |
Suc_diff_le drop_take min_def) | |
definition pfa_insert_grow :: "'a::{heap,default} pfarray \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a pfarray Heap" | |
where "pfa_insert_grow \<equiv> \<lambda>(a,n) i x. do { | |
a' \<leftarrow> pfa_ensure (a,n) (n+1); | |
a'' \<leftarrow> pfa_insert a' i x; | |
return a'' | |
}" | |
lemma pfa_insert_grow_rule[sep_heap_rules]: | |
"i \<le> n \<Longrightarrow> | |
<is_pfa c l (a,n)> | |
pfa_insert_grow (a,n) i x | |
<\<lambda>(a',n'). is_pfa (max c (n+1)) (take i l@x#drop i l) (a',n') * \<up>(n'=n+1 \<and> c \<ge> n)>\<^sub>t" | |
unfolding pfa_insert_grow_def | |
by (sep_auto heap add: pfa_insert_rule[of i n "max c (Suc n)"]) | |
definition pfa_extend where | |
"pfa_extend \<equiv> \<lambda> (a,n) (b,m). do{ | |
blit b 0 a n m; | |
return (a,n+m) | |
}" | |
lemma pfa_extend_rule[sep_heap_rules]: | |
"n+m \<le> c \<Longrightarrow> | |
<is_pfa c l1 (a,n) * is_pfa d l2 (b,m)> | |
pfa_extend (a,n) (b,m) | |
<\<lambda>(a',n'). is_pfa c (l1@l2) (a',n') * \<up>(a' = a \<and> n'=n+m) * is_pfa d l2 (b,m)>\<^sub>t" | |
unfolding pfa_extend_def | |
by (sep_auto simp add: is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule) | |
definition pfa_extend_grow where | |
"pfa_extend_grow \<equiv> \<lambda> (a,n) (b,m). do{ | |
a' \<leftarrow> array_ensure a (n+m) default; | |
blit b 0 a' n m; | |
return (a',n+m) | |
}" | |
lemma pfa_extend_grow_rule[sep_heap_rules]: | |
"<is_pfa c l1 (a,n) * is_pfa d l2 (b,m)> | |
pfa_extend_grow (a,n) (b,m) | |
<\<lambda>(a',n'). is_pfa (max c (n+m)) (l1@l2) (a',n') * \<up>(n'=n+m \<and> c \<ge> n) * is_pfa d l2 (b,m)>\<^sub>t" | |
unfolding pfa_extend_grow_def | |
by (sep_auto simp add: is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule) | |
definition pfa_append_extend_grow where | |
"pfa_append_extend_grow \<equiv> \<lambda> (a,n) x (b,m). do{ | |
a' \<leftarrow> array_ensure a (n+m+1) default; | |
a'' \<leftarrow> Array.upd n x a'; | |
blit b 0 a'' (n+1) m; | |
return (a'',n+m+1) | |
}" | |
lemma pfa_append_extend_grow_rule[sep_heap_rules]: | |
"<is_pfa c l1 (a,n) * is_pfa d l2 (b,m)> | |
pfa_append_extend_grow (a,n) x (b,m) | |
<\<lambda>(a',n'). is_pfa (max c (n+m+1)) (l1@x#l2) (a',n') * \<up>(n'=n+m+1 \<and> c \<ge> n) * is_pfa d l2 (b,m)>\<^sub>t" | |
unfolding pfa_append_extend_grow_def | |
by (sep_auto simp add: list_update_last is_pfa_def min.absorb1 min.absorb2 heap add: blit_rule) | |
definition "pfa_delete \<equiv> \<lambda>(a,n) i. do { | |
array_shl a (i+1) 1; | |
return (a,n-1) | |
}" | |
lemma pfa_delete_rule[sep_heap_rules]: | |
"i < n \<Longrightarrow> | |
<is_pfa c l (a,n)> | |
pfa_delete (a,n) i | |
<\<lambda>(a',n'). is_pfa c (take i l@drop (i+1) l) (a',n') * \<up>(n' = n-1 \<and> a=a')>" | |
unfolding pfa_delete_def is_pfa_def | |
apply (sep_auto simp add: drop_take min_def) | |
by (metis Suc_diff_Suc diff_zero dual_order.strict_trans2 le_less_Suc_eq zero_le) | |
end |