Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Lifting with applicative functors\<close> | |
theory Applicative | |
imports Main | |
keywords "applicative" :: thy_goal and "print_applicative" :: diag | |
begin | |
subsection \<open>Equality restricted to a set\<close> | |
definition eq_on :: "'a set \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" | |
where [simp]: "eq_on A = (\<lambda>x y. x \<in> A \<and> x = y)" | |
lemma rel_fun_eq_onI: "(\<And>x. x \<in> A \<Longrightarrow> R (f x) (g x)) \<Longrightarrow> rel_fun (eq_on A) R f g" | |
by auto | |
lemma rel_fun_map_fun2: "rel_fun (eq_on (range h)) A f g \<Longrightarrow> rel_fun (BNF_Def.Grp UNIV h)\<inverse>\<inverse> A f (map_fun h id g)" | |
by(auto simp add: rel_fun_def Grp_def eq_onp_def) | |
lemma rel_fun_refl_eq_onp: | |
"(\<And>z. z \<in> f ` X \<Longrightarrow> A z z) \<Longrightarrow> rel_fun (eq_on X) A f f" | |
by(auto simp add: rel_fun_def eq_onp_def) | |
lemma eq_onE: "\<lbrakk> eq_on X a b; \<lbrakk> b \<in> X; a = b \<rbrakk> \<Longrightarrow> thesis \<rbrakk> \<Longrightarrow> thesis" by auto | |
lemma Domainp_eq_on [simp]: "Domainp (eq_on X) = (\<lambda>x. x \<in> X)" | |
by auto | |
subsection \<open>Proof automation\<close> | |
lemma arg1_cong: "x = y \<Longrightarrow> f x z = f y z" | |
by (rule arg_cong) | |
lemma UNIV_E: "x \<in> UNIV \<Longrightarrow> P \<Longrightarrow> P" . | |
context begin | |
private named_theorems combinator_unfold | |
private named_theorems combinator_repr | |
private definition "B g f x \<equiv> g (f x)" | |
private definition "C f x y \<equiv> f y x" | |
private definition "I x \<equiv> x" | |
private definition "K x y \<equiv> x" | |
private definition "S f g x \<equiv> (f x) (g x)" | |
private definition "T x f \<equiv> f x" | |
private definition "W f x \<equiv> f x x" | |
lemmas [abs_def, combinator_unfold] = B_def C_def I_def K_def S_def T_def W_def | |
lemmas [combinator_repr] = combinator_unfold | |
private definition "cpair \<equiv> Pair" | |
private definition "cuncurry \<equiv> case_prod" | |
private lemma uncurry_pair: "cuncurry f (cpair x y) = f x y" | |
unfolding cpair_def cuncurry_def by simp | |
ML_file "applicative.ML" | |
local_setup \<open>Applicative.setup_combinators | |
[("B", @{thm B_def}), | |
("C", @{thm C_def}), | |
("I", @{thm I_def}), | |
("K", @{thm K_def}), | |
("S", @{thm S_def}), | |
("T", @{thm T_def}), | |
("W", @{thm W_def})]\<close> | |
private attribute_setup combinator_eq = | |
\<open>Scan.lift (Scan.option (Args.$$$ "weak" |-- | |
Scan.optional (Args.colon |-- Scan.repeat1 Args.name) []) >> | |
Applicative.combinator_rule_attrib)\<close> | |
lemma [combinator_eq]: "B \<equiv> S (K S) K" unfolding combinator_unfold . | |
lemma [combinator_eq]: "C \<equiv> S (S (K (S (K S) K)) S) (K K)" unfolding combinator_unfold . | |
lemma [combinator_eq]: "I \<equiv> W K" unfolding combinator_unfold . | |
lemma [combinator_eq]: "I \<equiv> C K ()" unfolding combinator_unfold . | |
lemma [combinator_eq]: "S \<equiv> B (B W) (B B C)" unfolding combinator_unfold . | |
lemma [combinator_eq]: "T \<equiv> C I" unfolding combinator_unfold . | |
lemma [combinator_eq]: "W \<equiv> S S (S K)" unfolding combinator_unfold . | |
lemma [combinator_eq weak: C]: | |
"C \<equiv> C (B B (B B (B W (C (B C (B (B B) (C B (cuncurry (K I))))) (cuncurry K))))) cpair" | |
unfolding combinator_unfold uncurry_pair . | |
end (* context *) | |
method_setup applicative_unfold = | |
\<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt => | |
SIMPLE_METHOD' (Applicative.unfold_wrapper_tac ctxt opt_af))\<close> | |
"unfold into an applicative expression" | |
method_setup applicative_fold = | |
\<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt => | |
SIMPLE_METHOD' (Applicative.fold_wrapper_tac ctxt opt_af))\<close> | |
"fold an applicative expression" | |
method_setup applicative_nf = | |
\<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt => | |
SIMPLE_METHOD' (Applicative.normalize_wrapper_tac ctxt opt_af))\<close> | |
"prove an equation that has been lifted to an applicative functor, using normal forms" | |
method_setup applicative_lifting = | |
\<open>Applicative.parse_opt_afun >> (fn opt_af => fn ctxt => | |
SIMPLE_METHOD' (Applicative.lifting_wrapper_tac ctxt opt_af))\<close> | |
"prove an equation that has been lifted to an applicative functor" | |
ML \<open>Outer_Syntax.local_theory_to_proof @{command_keyword "applicative"} | |
"register applicative functors" | |
(Parse.binding -- | |
Scan.optional (@{keyword "("} |-- Parse.list Parse.short_ident --| @{keyword ")"}) [] -- | |
(@{keyword "for"} |-- Parse.reserved "pure" |-- @{keyword ":"} |-- Parse.term) -- | |
(Parse.reserved "ap" |-- @{keyword ":"} |-- Parse.term) -- | |
Scan.option (Parse.reserved "rel" |-- @{keyword ":"} |-- Parse.term) -- | |
Scan.option (Parse.reserved "set" |-- @{keyword ":"} |-- Parse.term) >> | |
Applicative.applicative_cmd)\<close> | |
ML \<open>Outer_Syntax.command @{command_keyword "print_applicative"} | |
"print registered applicative functors" | |
(Scan.succeed (Toplevel.keep (Applicative.print_afuns o Toplevel.context_of)))\<close> | |
attribute_setup applicative_unfold = | |
\<open>Scan.lift (Scan.option Parse.name >> Applicative.add_unfold_attrib)\<close> | |
"register rules for unfolding into applicative expressions" | |
attribute_setup applicative_lifted = | |
\<open>Scan.lift (Parse.name >> Applicative.forward_lift_attrib)\<close> | |
"lift an equation to an applicative functor" | |
subsection \<open>Overloaded applicative operators\<close> | |
consts | |
pure :: "'a \<Rightarrow> 'b" | |
ap :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" | |
bundle applicative_syntax | |
begin | |
notation ap (infixl "\<diamondop>" 70) | |
end | |
hide_const (open) ap | |
end | |