Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.72 kB
section \<open>Target Language debug messages\<close>
theory Print
imports
"HOL-Decision_Procs.Approximation"
Affine_Code
Show.Show_Instances
"HOL-Library.Monad_Syntax"
Optimize_Float
begin
hide_const (open) floatarith.Max
subsection \<open>Printing\<close>
text \<open>Just for debugging purposes\<close>
definition print::"String.literal \<Rightarrow> unit" where "print x = ()"
context includes integer.lifting begin
end
code_printing constant print \<rightharpoonup> (SML) "TextIO.print"
subsection \<open>Write to File\<close>
definition file_output::"String.literal \<Rightarrow> ((String.literal \<Rightarrow> unit) \<Rightarrow> 'a) \<Rightarrow> 'a" where
"file_output _ f = f (\<lambda>_. ())"
code_printing constant file_output \<rightharpoonup> (SML) "(fn s => fn f => File.open'_output (fn os => f (File.output os)) (Path.explode s))"
subsection \<open>Show for Floats\<close>
definition showsp_float :: "float showsp"
where
"showsp_float p x = (
let m = mantissa x; e = exponent x in
if e = 0 then showsp_int p m else showsp_int p m o shows_string ''*2^'' o showsp_int p e)"
lemma show_law_float [show_law_intros]:
"show_law showsp_float r"
by (auto simp: showsp_float_def Let_def show_law_simps intro!: show_lawI)
lemma showsp_float_append [show_law_simps]:
"showsp_float p r (x @ y) = showsp_float p r x @ y"
by (intro show_lawD show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ float} @{term "showsp_float"} @{thm show_law_float}\<close>
derive "show" float
subsection \<open>Convert Float to Decimal number\<close>
text \<open>type for decimal floating point numbers
(currently just for printing, TODO? generalize theory Float for arbitrary base)\<close>
datatype float10 = Float10 (mantissa10: int) (exponent10: int)
notation Float10 (infix "\<e>" 999)
partial_function (tailrec) normalize_float10
where [code]: "normalize_float10 f =
(if mantissa10 f mod 10 \<noteq> 0 \<or> mantissa10 f = 0 then f
else normalize_float10 (Float10 (mantissa10 f div 20) (exponent10 f + 1)))"
subsubsection \<open>Version that should be easy to prove correct, but slow!\<close>
context includes floatarith_notation begin
definition "float_to_float10_approximation f = the
(do {
let (x, y) = (mantissa f * 1024, exponent f - 10);
let p = nat (bitlen (abs x) + bitlen (abs y) + 80); \<comment> \<open>FIXME: are there guarantees?\<close>
y_log \<leftarrow> approx p (Mult (Num (of_int y))
((Mult (Ln (Num 2))
(Inverse (Ln (Num 10)))))) [];
let e_fl = floor_fl (lower y_log);
let e = int_floor_fl e_fl;
m \<leftarrow> approx p (Mult (Num (of_int x)) (Powr (Num 10) (Add(Var 0) (Minus (Num e_fl))))) [Some y_log];
let ml = lower m;
let mu = upper m;
Some (normalize_float10 (Float10 (int_floor_fl ml) e), normalize_float10 (Float10 (- int_floor_fl (- mu)) e))
})"
end
lemma compute_float_of[code]: "float_of (real_of_float f) = f" by simp
subsection \<open>Trusted, but faster version\<close>
text \<open>TODO: this is the HOL version of the SML-code in Approximation.thy\<close>
lemma prod_case_call_mono[partial_function_mono]:
"mono_tailrec (\<lambda>f. (let (d, e) = a in (\<lambda>y. f (c d e y))) b)"
by (simp add: split_beta' call_mono)
definition divmod_int::"int \<Rightarrow> int \<Rightarrow> int * int"
where "divmod_int a b = (a div b, a mod b)"
partial_function (tailrec) f2f10_frac where
"f2f10_frac c p r digits cnt e =
(if r = 0 then (digits, cnt, 0)
else if p = 0 then (digits, cnt, r)
else (let
(d, r) = divmod_int (r * 10) (power_int 2 (-e))
in f2f10_frac (c \<or> d \<noteq> 0) (if d \<noteq> 0 \<or> c then p - 1 else p) r
(digits * 10 + d) (cnt + 1)) e)"
declare f2f10_frac.simps[code]
definition float2_float10::"int \<Rightarrow> bool \<Rightarrow> int \<Rightarrow> int \<Rightarrow> (int * int)" where
"float2_float10 prec rd m e = (
let
(m, e) = (if e < 0 then (m,e) else (m * power_int 2 e, 0));
sgn = sgn m;
m = abs m;
round_down = (sgn = 1 \<and> rd) \<or> (sgn = -1 \<and> \<not> rd);
(x, r) = divmod_int m ((power_int 2 (-e)));
p = ((if x = 0 then prec else prec - (log2 x + 1)) * 3) div 10 + 1;
(digits, e10, r) = if p > 0 then f2f10_frac (x \<noteq> 0) p r 0 0 e else (0,0,0);
digits = if round_down \<or> r = 0 then digits else digits + 1
in (sgn * (digits + x * (power_int 10 e10)), -e10))"
definition "lfloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 True (mantissa f) (exponent f)))"
definition "ufloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 False (mantissa f) (exponent f)))"
partial_function (tailrec) digits
where [code]: "digits m ds = (if m = 0 then ds else digits (m div 10) (m mod 10 # ds))"
primrec showsp_float10 :: "float10 showsp"
where
"showsp_float10 p (Float10 m e) = (
let
ds = digits (nat (abs m)) [];
d = int (length ds);
e = e + d - 1;
mp = take 1 ds;
ms = drop 1 ds;
ms = rev (dropWhile ((=) 0) (rev ms));
show_digits = shows_list_gen (showsp_nat p) ''0'' '''' '''' ''''
in (if m < 0 then shows_string ''-'' else (\<lambda>x. x)) o
show_digits mp o
(if ms = [] then (\<lambda>x. x) else shows_string ''.'' o show_digits ms) o
(if e = 0 then (\<lambda>x. x) else shows_string ''e'' o showsp_int p e))"
lemma show_law_float10_aux:
fixes m e
shows "show_law showsp_float10 (Float10 m e)"
apply (rule show_lawI)
unfolding showsp_float10.simps Let_def
apply (simp add: show_law_simps )
done
lemma show_law_float10 [show_law_intros]: "show_law showsp_float10 r"
by (cases r) (auto simp: show_law_float10_aux)
lemma showsp_float10_append [show_law_simps]:
"showsp_float10 p r (x @ y) = showsp_float10 p r x @ y"
by (intro show_lawD show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ float10} @{term "showsp_float10"} @{thm show_law_float10}\<close>
derive "show" float10
definition "showsp_real p x = showsp_float10 p (lfloat10 x)"
lemma show_law_real[show_law_intros]: "show_law showsp_real x"
using show_law_float10[of "lfloat10 x"]
by (auto simp: showsp_real_def[abs_def] Let_def show_law_def
simp del: showsp_float10.simps intro!: show_law_intros)
local_setup \<open>Show_Generator.register_foreign_showsp @{typ real} @{term "showsp_real"} @{thm show_law_real}\<close>
derive "show" real
subsection \<open>gnuplot output\<close>
subsubsection \<open>vector output of 2D zonotope\<close>
fun polychain_of_segments::"((real \<times> real) \<times> (real \<times> real)) list \<Rightarrow> (real \<times> real) list"
where
"polychain_of_segments [] = []"
| "polychain_of_segments (((x0, y0), z)#segs) = (x0, y0)#z#map snd segs"
definition shows_segments_of_aform
where "shows_segments_of_aform a b xs color =
shows_list_gen id '''' '''' ''\<newline>'' ''\<newline>'' (map (\<lambda>(x0, y0).
shows_words (map lfloat10 [x0, y0]) o shows_space o shows_string color)
(polychain_of_segments (segments_of_aform (prod_of_aforms (xs ! a) (xs ! b)))))"
abbreviation "show_segments_of_aform a b x c \<equiv> shows_segments_of_aform a b x c ''''"
definition shows_box_of_aforms\<comment> \<open>box and some further information\<close>
where "shows_box_of_aforms (XS::real aform list) = (let
RS = map (Radius' 20) XS;
l = map (Inf_aform' 20) XS;
u = map (Sup_aform' 20) XS
in shows_words
(l @ u @ RS) o shows_space o
shows (card (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS))))
)"
abbreviation "show_box_of_aforms x \<equiv> shows_box_of_aforms x ''''"
definition "pdevs_domains ((XS::real aform list)) = (\<Union>((\<lambda>x. pdevs_domain (snd x)) ` (set XS)))"
definition "generators XS =
(let
is = sorted_list_of_set (pdevs_domains XS);
rs = map (\<lambda>i. (i, map (\<lambda>x. pdevs_apply (snd x) i) XS)) is
in
(map fst XS, rs))"
definition shows_box_of_aforms_hr\<comment> \<open>human readable\<close>
where "shows_box_of_aforms_hr XS = (let
RS = map (Radius' 20) XS;
l = map (Inf_aform' 20) XS;
u = map (Sup_aform' 20) XS
in shows_paren (shows_words l) o shows_string '' .. '' o shows_paren (shows_words u) o
shows_string ''; devs: '' o shows (card (pdevs_domains XS)) o
shows_string ''; tdev: '' o shows_paren (shows_words RS)
)"
abbreviation "show_box_of_aforms_hr x \<equiv> shows_box_of_aforms_hr x ''''"
definition shows_aforms_hr\<comment> \<open>human readable\<close>
where "shows_aforms_hr XS = shows (generators XS)"
abbreviation "show_aform_hr x \<equiv> shows_aforms_hr x ''''"
end