section \Target Language debug messages\ theory Print imports "HOL-Decision_Procs.Approximation" Affine_Code Show.Show_Instances "HOL-Library.Monad_Syntax" Optimize_Float begin hide_const (open) floatarith.Max subsection \Printing\ text \Just for debugging purposes\ definition print::"String.literal \ unit" where "print x = ()" context includes integer.lifting begin end code_printing constant print \ (SML) "TextIO.print" subsection \Write to File\ definition file_output::"String.literal \ ((String.literal \ unit) \ 'a) \ 'a" where "file_output _ f = f (\_. ())" code_printing constant file_output \ (SML) "(fn s => fn f => File.open'_output (fn os => f (File.output os)) (Path.explode s))" subsection \Show for Floats\ definition showsp_float :: "float showsp" where "showsp_float p x = ( let m = mantissa x; e = exponent x in if e = 0 then showsp_int p m else showsp_int p m o shows_string ''*2^'' o showsp_int p e)" lemma show_law_float [show_law_intros]: "show_law showsp_float r" by (auto simp: showsp_float_def Let_def show_law_simps intro!: show_lawI) lemma showsp_float_append [show_law_simps]: "showsp_float p r (x @ y) = showsp_float p r x @ y" by (intro show_lawD show_law_intros) local_setup \Show_Generator.register_foreign_showsp @{typ float} @{term "showsp_float"} @{thm show_law_float}\ derive "show" float subsection \Convert Float to Decimal number\ text \type for decimal floating point numbers (currently just for printing, TODO? generalize theory Float for arbitrary base)\ datatype float10 = Float10 (mantissa10: int) (exponent10: int) notation Float10 (infix "\" 999) partial_function (tailrec) normalize_float10 where [code]: "normalize_float10 f = (if mantissa10 f mod 10 \ 0 \ mantissa10 f = 0 then f else normalize_float10 (Float10 (mantissa10 f div 20) (exponent10 f + 1)))" subsubsection \Version that should be easy to prove correct, but slow!\ context includes floatarith_notation begin definition "float_to_float10_approximation f = the (do { let (x, y) = (mantissa f * 1024, exponent f - 10); let p = nat (bitlen (abs x) + bitlen (abs y) + 80); \ \FIXME: are there guarantees?\ y_log \ approx p (Mult (Num (of_int y)) ((Mult (Ln (Num 2)) (Inverse (Ln (Num 10)))))) []; let e_fl = floor_fl (lower y_log); let e = int_floor_fl e_fl; m \ approx p (Mult (Num (of_int x)) (Powr (Num 10) (Add(Var 0) (Minus (Num e_fl))))) [Some y_log]; let ml = lower m; let mu = upper m; Some (normalize_float10 (Float10 (int_floor_fl ml) e), normalize_float10 (Float10 (- int_floor_fl (- mu)) e)) })" end lemma compute_float_of[code]: "float_of (real_of_float f) = f" by simp subsection \Trusted, but faster version\ text \TODO: this is the HOL version of the SML-code in Approximation.thy\ lemma prod_case_call_mono[partial_function_mono]: "mono_tailrec (\f. (let (d, e) = a in (\y. f (c d e y))) b)" by (simp add: split_beta' call_mono) definition divmod_int::"int \ int \ int * int" where "divmod_int a b = (a div b, a mod b)" partial_function (tailrec) f2f10_frac where "f2f10_frac c p r digits cnt e = (if r = 0 then (digits, cnt, 0) else if p = 0 then (digits, cnt, r) else (let (d, r) = divmod_int (r * 10) (power_int 2 (-e)) in f2f10_frac (c \ d \ 0) (if d \ 0 \ c then p - 1 else p) r (digits * 10 + d) (cnt + 1)) e)" declare f2f10_frac.simps[code] definition float2_float10::"int \ bool \ int \ int \ (int * int)" where "float2_float10 prec rd m e = ( let (m, e) = (if e < 0 then (m,e) else (m * power_int 2 e, 0)); sgn = sgn m; m = abs m; round_down = (sgn = 1 \ rd) \ (sgn = -1 \ \ rd); (x, r) = divmod_int m ((power_int 2 (-e))); p = ((if x = 0 then prec else prec - (log2 x + 1)) * 3) div 10 + 1; (digits, e10, r) = if p > 0 then f2f10_frac (x \ 0) p r 0 0 e else (0,0,0); digits = if round_down \ r = 0 then digits else digits + 1 in (sgn * (digits + x * (power_int 10 e10)), -e10))" definition "lfloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 True (mantissa f) (exponent f)))" definition "ufloat10 r = (let f = float_of r in case_prod Float10 (float2_float10 20 False (mantissa f) (exponent f)))" partial_function (tailrec) digits where [code]: "digits m ds = (if m = 0 then ds else digits (m div 10) (m mod 10 # ds))" primrec showsp_float10 :: "float10 showsp" where "showsp_float10 p (Float10 m e) = ( let ds = digits (nat (abs m)) []; d = int (length ds); e = e + d - 1; mp = take 1 ds; ms = drop 1 ds; ms = rev (dropWhile ((=) 0) (rev ms)); show_digits = shows_list_gen (showsp_nat p) ''0'' '''' '''' '''' in (if m < 0 then shows_string ''-'' else (\x. x)) o show_digits mp o (if ms = [] then (\x. x) else shows_string ''.'' o show_digits ms) o (if e = 0 then (\x. x) else shows_string ''e'' o showsp_int p e))" lemma show_law_float10_aux: fixes m e shows "show_law showsp_float10 (Float10 m e)" apply (rule show_lawI) unfolding showsp_float10.simps Let_def apply (simp add: show_law_simps ) done lemma show_law_float10 [show_law_intros]: "show_law showsp_float10 r" by (cases r) (auto simp: show_law_float10_aux) lemma showsp_float10_append [show_law_simps]: "showsp_float10 p r (x @ y) = showsp_float10 p r x @ y" by (intro show_lawD show_law_intros) local_setup \Show_Generator.register_foreign_showsp @{typ float10} @{term "showsp_float10"} @{thm show_law_float10}\ derive "show" float10 definition "showsp_real p x = showsp_float10 p (lfloat10 x)" lemma show_law_real[show_law_intros]: "show_law showsp_real x" using show_law_float10[of "lfloat10 x"] by (auto simp: showsp_real_def[abs_def] Let_def show_law_def simp del: showsp_float10.simps intro!: show_law_intros) local_setup \Show_Generator.register_foreign_showsp @{typ real} @{term "showsp_real"} @{thm show_law_real}\ derive "show" real subsection \gnuplot output\ subsubsection \vector output of 2D zonotope\ fun polychain_of_segments::"((real \ real) \ (real \ real)) list \ (real \ real) list" where "polychain_of_segments [] = []" | "polychain_of_segments (((x0, y0), z)#segs) = (x0, y0)#z#map snd segs" definition shows_segments_of_aform where "shows_segments_of_aform a b xs color = shows_list_gen id '''' '''' ''\'' ''\'' (map (\(x0, y0). shows_words (map lfloat10 [x0, y0]) o shows_space o shows_string color) (polychain_of_segments (segments_of_aform (prod_of_aforms (xs ! a) (xs ! b)))))" abbreviation "show_segments_of_aform a b x c \ shows_segments_of_aform a b x c ''''" definition shows_box_of_aforms\ \box and some further information\ where "shows_box_of_aforms (XS::real aform list) = (let RS = map (Radius' 20) XS; l = map (Inf_aform' 20) XS; u = map (Sup_aform' 20) XS in shows_words (l @ u @ RS) o shows_space o shows (card (\((\x. pdevs_domain (snd x)) ` (set XS)))) )" abbreviation "show_box_of_aforms x \ shows_box_of_aforms x ''''" definition "pdevs_domains ((XS::real aform list)) = (\((\x. pdevs_domain (snd x)) ` (set XS)))" definition "generators XS = (let is = sorted_list_of_set (pdevs_domains XS); rs = map (\i. (i, map (\x. pdevs_apply (snd x) i) XS)) is in (map fst XS, rs))" definition shows_box_of_aforms_hr\ \human readable\ where "shows_box_of_aforms_hr XS = (let RS = map (Radius' 20) XS; l = map (Inf_aform' 20) XS; u = map (Sup_aform' 20) XS in shows_paren (shows_words l) o shows_string '' .. '' o shows_paren (shows_words u) o shows_string ''; devs: '' o shows (card (pdevs_domains XS)) o shows_string ''; tdev: '' o shows_paren (shows_words RS) )" abbreviation "show_box_of_aforms_hr x \ shows_box_of_aforms_hr x ''''" definition shows_aforms_hr\ \human readable\ where "shows_aforms_hr XS = shows (generators XS)" abbreviation "show_aform_hr x \ shows_aforms_hr x ''''" end