Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
theory Canton_Transaction_Tree imports | |
Inclusion_Proof_Construction | |
begin | |
section \<open>Canton's hierarchical transaction trees\<close> | |
typedecl view_data | |
typedecl view_metadata | |
typedecl common_metadata | |
typedecl participant_metadata | |
datatype view = View view_metadata view_data (subviews: "view list") | |
datatype transaction = Transaction common_metadata participant_metadata (views: "view list") | |
subsection \<open>Views as authenticated data structures\<close> | |
type_synonym view_metadata\<^sub>h = "view_metadata blindable\<^sub>h" | |
type_synonym view_data\<^sub>h = "view_data blindable\<^sub>h" | |
datatype view\<^sub>h = View\<^sub>h "((view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h" | |
type_synonym view_metadata\<^sub>m = "(view_metadata, view_metadata) blindable\<^sub>m" | |
type_synonym view_data\<^sub>m = "(view_data, view_data) blindable\<^sub>m" | |
datatype view\<^sub>m = View\<^sub>m | |
"((view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m, | |
(view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m" | |
abbreviation (input) hash_view_data :: "(view_data\<^sub>m, view_data\<^sub>h) hash" where | |
"hash_view_data \<equiv> hash_blindable id" | |
abbreviation (input) blinding_of_view_data :: "view_data\<^sub>m blinding_of" where | |
"blinding_of_view_data \<equiv> blinding_of_blindable id (=)" | |
abbreviation (input) merge_view_data :: "view_data\<^sub>m merge" where | |
"merge_view_data \<equiv> merge_blindable id merge_discrete" | |
lemma merkle_view_data: | |
"merkle_interface hash_view_data blinding_of_view_data merge_view_data" | |
by unfold_locales | |
abbreviation (input) hash_view_metadata :: "(view_metadata\<^sub>m, view_metadata\<^sub>h) hash" where | |
"hash_view_metadata \<equiv> hash_blindable id" | |
abbreviation (input) blinding_of_view_metadata :: "view_metadata\<^sub>m blinding_of" where | |
"blinding_of_view_metadata \<equiv> blinding_of_blindable id (=)" | |
abbreviation (input) merge_view_metadata :: "view_metadata\<^sub>m merge" where | |
"merge_view_metadata \<equiv> merge_blindable id merge_discrete" | |
lemma merkle_view_metadata: | |
"merkle_interface hash_view_metadata blinding_of_view_metadata merge_view_metadata" | |
by unfold_locales | |
type_synonym view_content = "view_metadata \<times> view_data" | |
type_synonym view_content\<^sub>h = "view_metadata\<^sub>h \<times>\<^sub>h view_data\<^sub>h" | |
type_synonym view_content\<^sub>m = "view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m" | |
locale view_merkle begin | |
type_synonym view\<^sub>h' = "view_content\<^sub>h rose_tree\<^sub>h" | |
primrec from_view\<^sub>h :: "view\<^sub>h \<Rightarrow> view\<^sub>h'" where | |
"from_view\<^sub>h (View\<^sub>h x) = Tree\<^sub>h (map_blindable\<^sub>h (map_prod id (map from_view\<^sub>h)) x)" | |
primrec to_view\<^sub>h :: "view\<^sub>h' \<Rightarrow> view\<^sub>h" where | |
"to_view\<^sub>h (Tree\<^sub>h x) = View\<^sub>h (map_blindable\<^sub>h (map_prod id (map to_view\<^sub>h)) x)" | |
lemma from_to_view\<^sub>h [simp]: "from_view\<^sub>h (to_view\<^sub>h x) = x" | |
apply(induction x) | |
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp) | |
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def]) | |
done | |
lemma to_from_view\<^sub>h [simp]: "to_view\<^sub>h (from_view\<^sub>h x) = x" | |
apply(induction x) | |
apply(simp add: blindable\<^sub>h.map_comp o_def prod.map_comp) | |
apply(simp cong: blindable\<^sub>h.map_cong prod.map_cong list.map_cong add: blindable\<^sub>h.map_id[unfolded id_def]) | |
done | |
lemma iso_view\<^sub>h: "type_definition from_view\<^sub>h to_view\<^sub>h UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_view\<^sub>h | |
lemma cr_view\<^sub>h_Grp: "cr_view\<^sub>h = Grp UNIV to_view\<^sub>h" | |
by(simp add: cr_view\<^sub>h_def Grp_def fun_eq_iff)(transfer, auto) | |
lemma View\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows | |
"(rel_blindable\<^sub>h (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>h) Tree\<^sub>h View\<^sub>h" | |
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq cr_view\<^sub>h_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>h.rel_Grp) | |
(simp add: Grp_def) | |
type_synonym view\<^sub>m' = "(view_content\<^sub>m, view_content\<^sub>h) rose_tree\<^sub>m" | |
primrec from_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view\<^sub>m'" where | |
"from_view\<^sub>m (View\<^sub>m x) = Tree\<^sub>m (map_blindable\<^sub>m (map_prod id (map from_view\<^sub>m)) (map_prod id (map from_view\<^sub>h)) x)" | |
primrec to_view\<^sub>m :: "view\<^sub>m' \<Rightarrow> view\<^sub>m" where | |
"to_view\<^sub>m (Tree\<^sub>m x) = View\<^sub>m (map_blindable\<^sub>m (map_prod id (map to_view\<^sub>m)) (map_prod id (map to_view\<^sub>h)) x)" | |
lemma from_to_view\<^sub>m [simp]: "from_view\<^sub>m (to_view\<^sub>m x) = x" | |
apply(induction x) | |
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp) | |
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def]) | |
done | |
lemma to_from_view\<^sub>m [simp]: "to_view\<^sub>m (from_view\<^sub>m x) = x" | |
apply(induction x) | |
apply(simp add: blindable\<^sub>m.map_comp o_def prod.map_comp) | |
apply(simp cong: blindable\<^sub>m.map_cong prod.map_cong list.map_cong add: blindable\<^sub>m.map_id[unfolded id_def]) | |
done | |
lemma iso_view\<^sub>m: "type_definition from_view\<^sub>m to_view\<^sub>m UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_view\<^sub>m | |
lemma cr_view\<^sub>m_Grp: "cr_view\<^sub>m = Grp UNIV to_view\<^sub>m" | |
by(simp add: cr_view\<^sub>m_def Grp_def fun_eq_iff)(transfer, auto) | |
lemma View\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows | |
"(rel_blindable\<^sub>m (rel_prod (=) (list_all2 pcr_view\<^sub>m)) (rel_prod (=) (list_all2 pcr_view\<^sub>h)) ===> pcr_view\<^sub>m) Tree\<^sub>m View\<^sub>m" | |
by(simp add: rel_fun_def view\<^sub>h.pcr_cr_eq view\<^sub>m.pcr_cr_eq cr_view\<^sub>h_Grp cr_view\<^sub>m_Grp list.rel_Grp eq_alt prod.rel_Grp blindable\<^sub>m.rel_Grp) | |
(simp add: Grp_def) | |
end | |
code_datatype View\<^sub>h | |
code_datatype View\<^sub>m | |
context begin | |
interpretation view_merkle . | |
abbreviation (input) hash_view_content :: "(view_content\<^sub>m, view_content\<^sub>h) hash" where | |
"hash_view_content \<equiv> hash_prod hash_view_metadata hash_view_data" | |
abbreviation (input) blinding_of_view_content :: "view_content\<^sub>m blinding_of" where | |
"blinding_of_view_content \<equiv> blinding_of_prod blinding_of_view_metadata blinding_of_view_data" | |
abbreviation (input) merge_view_content :: "view_content\<^sub>m merge" where | |
"merge_view_content \<equiv> merge_prod merge_view_metadata merge_view_data" | |
lift_definition hash_view :: "(view\<^sub>m, view\<^sub>h) hash" is | |
"hash_tree hash_view_content" . | |
lift_definition blinding_of_view :: "view\<^sub>m blinding_of" is | |
"blinding_of_tree hash_view_content blinding_of_view_content" . | |
lift_definition merge_view :: "view\<^sub>m merge" is | |
"merge_tree hash_view_content merge_view_content" . | |
lemma merkle_view [locale_witness]: "merkle_interface hash_view blinding_of_view merge_view" | |
by transfer unfold_locales | |
lemma hash_view_simps [simp]: | |
"hash_view (View\<^sub>m x) = | |
View\<^sub>h (hash_blindable (hash_prod hash_view_content (hash_list hash_view)) x)" | |
by transfer(simp add: hash_rt_F\<^sub>m_def prod.map_comp hash_blindable_def blindable\<^sub>m.map_id) | |
lemma blinding_of_view_iff [simp]: | |
"blinding_of_view (View\<^sub>m x) (View\<^sub>m y) \<longleftrightarrow> | |
blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view)) | |
(blinding_of_prod blinding_of_view_content (blinding_of_list blinding_of_view)) x y" | |
by transfer simp | |
lemma blinding_of_view_induct [consumes 1, induct pred: blinding_of_view]: | |
assumes "blinding_of_view x y" | |
and "\<And>x y. blinding_of_blindable (hash_prod hash_view_content (hash_list hash_view)) | |
(blinding_of_prod blinding_of_view_content (blinding_of_list (\<lambda>x y. blinding_of_view x y \<and> P x y))) x y | |
\<Longrightarrow> P (View\<^sub>m x) (View\<^sub>m y)" | |
shows "P x y" | |
using assms by transfer(rule blinding_of_tree.induct) | |
lemma merge_view_simps [simp]: | |
"merge_view (View\<^sub>m x) (View\<^sub>m y) = | |
map_option View\<^sub>m (merge_rt_F\<^sub>m hash_view_content merge_view_content hash_view merge_view x y)" | |
by transfer simp | |
end | |
subsection \<open>Transaction trees as authenticated data structures\<close> | |
type_synonym common_metadata\<^sub>h = "common_metadata blindable\<^sub>h" | |
type_synonym common_metadata\<^sub>m = "(common_metadata, common_metadata) blindable\<^sub>m" | |
type_synonym participant_metadata\<^sub>h = "participant_metadata blindable\<^sub>h" | |
type_synonym participant_metadata\<^sub>m = "(participant_metadata, participant_metadata) blindable\<^sub>m" | |
datatype transaction\<^sub>h = Transaction\<^sub>h | |
(the_Transaction\<^sub>h: "((common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>h") | |
datatype transaction\<^sub>m = Transaction\<^sub>m | |
(the_Transaction\<^sub>m: "((common_metadata\<^sub>m \<times>\<^sub>m participant_metadata\<^sub>m) \<times>\<^sub>m view\<^sub>m list\<^sub>m, | |
(common_metadata\<^sub>h \<times>\<^sub>h participant_metadata\<^sub>h) \<times>\<^sub>h view\<^sub>h list\<^sub>h) blindable\<^sub>m") | |
abbreviation (input) hash_common_metadata :: "(common_metadata\<^sub>m, common_metadata\<^sub>h) hash" where | |
"hash_common_metadata \<equiv> hash_blindable id" | |
abbreviation (input) blinding_of_common_metadata :: "common_metadata\<^sub>m blinding_of" where | |
"blinding_of_common_metadata \<equiv> blinding_of_blindable id (=)" | |
abbreviation (input) merge_common_metadata :: "common_metadata\<^sub>m merge" where | |
"merge_common_metadata \<equiv> merge_blindable id merge_discrete" | |
abbreviation (input) hash_participant_metadata :: "(participant_metadata\<^sub>m, participant_metadata\<^sub>h) hash" where | |
"hash_participant_metadata \<equiv> hash_blindable id" | |
abbreviation (input) blinding_of_participant_metadata :: "participant_metadata\<^sub>m blinding_of" where | |
"blinding_of_participant_metadata \<equiv> blinding_of_blindable id (=)" | |
abbreviation (input) merge_participant_metadata :: "participant_metadata\<^sub>m merge" where | |
"merge_participant_metadata \<equiv> merge_blindable id merge_discrete" | |
locale transaction_merkle begin | |
lemma iso_transaction\<^sub>h: "type_definition the_Transaction\<^sub>h Transaction\<^sub>h UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_transaction\<^sub>h | |
lemma Transaction\<^sub>h_transfer [transfer_rule]: includes lifting_syntax shows | |
"((=) ===> pcr_transaction\<^sub>h) id Transaction\<^sub>h" | |
by(simp add: transaction\<^sub>h.pcr_cr_eq cr_transaction\<^sub>h_def rel_fun_def) | |
lemma iso_transaction\<^sub>m: "type_definition the_Transaction\<^sub>m Transaction\<^sub>m UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_transaction\<^sub>m | |
lemma Transaction\<^sub>m_transfer [transfer_rule]: includes lifting_syntax shows | |
"((=) ===> pcr_transaction\<^sub>m) id Transaction\<^sub>m" | |
by(simp add: transaction\<^sub>m.pcr_cr_eq cr_transaction\<^sub>m_def rel_fun_def) | |
end | |
code_datatype Transaction\<^sub>h | |
code_datatype Transaction\<^sub>m | |
context begin | |
interpretation transaction_merkle . | |
lift_definition hash_transaction :: "(transaction\<^sub>m, transaction\<^sub>h) hash" is | |
"hash_blindable (hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view))" . | |
lift_definition blinding_of_transaction :: "transaction\<^sub>m blinding_of" is | |
"blinding_of_blindable | |
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view)) | |
(blinding_of_prod (blinding_of_prod blinding_of_common_metadata blinding_of_participant_metadata) (blinding_of_list blinding_of_view))" . | |
lift_definition merge_transaction :: "transaction\<^sub>m merge" is | |
"merge_blindable | |
(hash_prod (hash_prod hash_common_metadata hash_participant_metadata) (hash_list hash_view)) | |
(merge_prod (merge_prod merge_common_metadata merge_participant_metadata) (merge_list merge_view))" . | |
lemma merkle_transaction [locale_witness]: | |
"merkle_interface hash_transaction blinding_of_transaction merge_transaction" | |
by transfer unfold_locales | |
lemmas hash_transaction_simps [simp] = hash_transaction.abs_eq | |
lemmas blinding_of_transaction_iff [simp] = blinding_of_transaction.abs_eq | |
lemmas merge_transaction_simps [simp] = merge_transaction.abs_eq | |
end | |
interpretation transaction: | |
merkle_interface hash_transaction blinding_of_transaction merge_transaction | |
by(rule merkle_transaction) | |
subsection \<open> | |
Constructing authenticated data structures for views | |
\<close> | |
context view_merkle begin | |
type_synonym view' = "(view_metadata \<times> view_data) rose_tree" | |
primrec from_view :: "view \<Rightarrow> view'" where | |
"from_view (View vm vd vs) = Tree ((vm, vd), map from_view vs)" | |
primrec to_view :: "view' \<Rightarrow> view" where | |
"to_view (Tree x) = View (fst (fst x)) (snd (fst x)) (snd (map_prod id (map to_view) x))" | |
lemma from_to_view [simp]: "from_view (to_view x) = x" | |
by(induction x)(clarsimp cong: map_cong) | |
lemma to_from_view [simp]: "to_view (from_view x) = x" | |
by(induction x)(clarsimp cong: map_cong) | |
lemma iso_view: "type_definition from_view to_view UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_view | |
definition View' :: "(view_metadata \<times> view_data) \<times> view list \<Rightarrow> view" where | |
"View' = (\<lambda>((vm, vd), vs). View vm vd vs)" | |
lemma View_View': "View = (\<lambda>vm vd vs. View' ((vm, vd), vs))" | |
by(simp add: View'_def) | |
lemma cr_view_Grp: "cr_view = Grp UNIV to_view" | |
by(simp add: cr_view_def Grp_def fun_eq_iff)(transfer, auto) | |
lemma View'_transfer [transfer_rule]: includes lifting_syntax shows | |
"(rel_prod (=) (list_all2 pcr_view) ===> pcr_view) Tree View'" | |
by(simp add: view.pcr_cr_eq cr_view_Grp eq_alt prod.rel_Grp rose_tree.rel_Grp list.rel_Grp) | |
(auto simp add: Grp_def View'_def) | |
end | |
code_datatype View | |
context begin | |
interpretation view_merkle . | |
abbreviation embed_view_content :: "view_metadata \<times> view_data \<Rightarrow> view_metadata\<^sub>m \<times> view_data\<^sub>m" where | |
"embed_view_content \<equiv> map_prod Unblinded Unblinded" | |
lift_definition embed_view :: "view \<Rightarrow> view\<^sub>m" is "embed_source_tree embed_view_content" . | |
lemma embed_view_simps [simp]: | |
"embed_view (View vm vd vs) = View\<^sub>m (Unblinded ((Unblinded vm, Unblinded vd), map embed_view vs))" | |
unfolding View_View' by transfer simp | |
end | |
context transaction_merkle begin | |
primrec the_Transaction :: "transaction \<Rightarrow> (common_metadata \<times> participant_metadata) \<times> view list" where | |
"the_Transaction (Transaction cm pm views) = ((cm, pm), views)" for views | |
definition Transaction' :: "(common_metadata \<times> participant_metadata) \<times> view list \<Rightarrow> transaction" where | |
"Transaction' = (\<lambda>((cm, pm), views). Transaction cm pm views)" | |
lemma Transaction_Transaction': "Transaction = (\<lambda>cm pm views. Transaction' ((cm, pm), views))" | |
by(simp add: Transaction'_def) | |
lemma the_Transaction_inverse [simp]: "Transaction' (the_Transaction x) = x" | |
by(cases x)(simp add: Transaction'_def) | |
lemma Transaction'_inverse [simp]: "the_Transaction (Transaction' x) = x" | |
by(simp add: Transaction'_def split_def) | |
lemma iso_transaction: "type_definition the_Transaction Transaction' UNIV" | |
by unfold_locales simp_all | |
setup_lifting iso_transaction | |
lemma Transaction'_transfer [transfer_rule]: includes lifting_syntax shows | |
"((=) ===> pcr_transaction) id Transaction'" | |
by(simp add: transaction.pcr_cr_eq cr_transaction_def rel_fun_def) | |
end | |
code_datatype Transaction | |
context begin | |
interpretation transaction_merkle . | |
lift_definition embed_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" is | |
"Unblinded \<circ> map_prod (map_prod Unblinded Unblinded) (map embed_view)" . | |
lemma embed_transaction_simps [simp]: | |
"embed_transaction (Transaction cm pm views) = | |
Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), map embed_view views))" | |
for views unfolding Transaction_Transaction' by transfer simp | |
end | |
subsubsection \<open>Inclusion proof for the mediator\<close> | |
primrec mediator_view :: "view \<Rightarrow> view\<^sub>m" where | |
"mediator_view (View vm vd vs) = | |
View\<^sub>m (Unblinded ((Unblinded vm, Blinded (Content vd)), map mediator_view vs))" | |
primrec mediator_transaction_tree :: "transaction \<Rightarrow> transaction\<^sub>m" where | |
"mediator_transaction_tree (Transaction cm pm views) = | |
Transaction\<^sub>m (Unblinded ((Unblinded cm, Blinded (Content pm)), map mediator_view views))" | |
for views | |
lemma blinding_of_mediator_view [simp]: "blinding_of_view (mediator_view view) (embed_view view)" | |
by(induction view)(auto simp add: list.rel_map intro!: list.rel_refl_strong) | |
lemma blinding_of_mediator_transaction_tree: | |
"blinding_of_transaction (mediator_transaction_tree tt) (embed_transaction tt)" | |
by(cases tt)(auto simp add: list.rel_map intro: list.rel_refl_strong) | |
subsubsection \<open>Inclusion proofs for participants\<close> | |
text \<open>Next, we define a function for producing all transaction views from a given view, | |
and prove its properties.\<close> | |
type_synonym view_path_elem = "(view_metadata \<times> view_data) blindable \<times> view list \<times> view list" | |
type_synonym view_path = "view_path_elem list" | |
type_synonym view_zipper = "view_path \<times> view" | |
type_synonym view_path_elem\<^sub>m = "(view_metadata\<^sub>m \<times>\<^sub>m view_data\<^sub>m) \<times> view\<^sub>m list\<^sub>m \<times> view\<^sub>m list\<^sub>m" | |
type_synonym view_path\<^sub>m = "view_path_elem\<^sub>m list" | |
type_synonym view_zipper\<^sub>m = "view_path\<^sub>m \<times> view\<^sub>m" | |
context begin | |
interpretation view_merkle . | |
lift_definition zipper_of_view :: "view \<Rightarrow> view_zipper" is zipper_of_tree . | |
lift_definition view_of_zipper :: "view_zipper \<Rightarrow> view" is tree_of_zipper . | |
lift_definition zipper_of_view\<^sub>m :: "view\<^sub>m \<Rightarrow> view_zipper\<^sub>m" is zipper_of_tree\<^sub>m . | |
lift_definition view_of_zipper\<^sub>m :: "view_zipper\<^sub>m \<Rightarrow> view\<^sub>m" is tree_of_zipper\<^sub>m . | |
lemma view_of_zipper\<^sub>m_Nil [simp]: "view_of_zipper\<^sub>m ([], t) = t" | |
by transfer simp | |
lift_definition blind_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is | |
"blind_path_elem embed_view_content hash_view_content" . | |
lift_definition blind_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is | |
"blind_path embed_view_content hash_view_content" . | |
lift_definition embed_view_path_elem :: "view_path_elem \<Rightarrow> view_path_elem\<^sub>m" is | |
"embed_path_elem embed_view_content" . | |
lift_definition embed_view_path :: "view_path \<Rightarrow> view_path\<^sub>m" is | |
"embed_path embed_view_content" . | |
lift_definition hash_view_path_elem :: "view_path_elem\<^sub>m \<Rightarrow> (view_content\<^sub>h \<times> view\<^sub>h list \<times> view\<^sub>h list)" is | |
"hash_path_elem hash_view_content" . | |
lift_definition zippers_view :: "view_zipper \<Rightarrow> view_zipper\<^sub>m list" is | |
"zippers_rose_tree embed_view_content hash_view_content" . | |
lemma embed_view_path_Nil [simp]: "embed_view_path [] = []" | |
by transfer(simp add: embed_path_def) | |
lemma zippers_view_same_hash: | |
assumes "z \<in> set (zippers_view (p, t))" | |
shows "hash_view (view_of_zipper\<^sub>m z) = hash_view (view_of_zipper\<^sub>m (embed_view_path p, embed_view t))" | |
using assms by transfer(rule zippers_rose_tree_same_hash') | |
lemma zippers_view_blinding_of: | |
assumes "z \<in> set (zippers_view (p, t))" | |
shows "blinding_of_view (view_of_zipper\<^sub>m z) (view_of_zipper\<^sub>m (blind_view_path p, embed_view t))" | |
using assms by transfer(rule zippers_rose_tree_blinding_of, unfold_locales) | |
end | |
primrec blind_view :: "view \<Rightarrow> view\<^sub>m" where | |
"blind_view (View vm vd subviews) = | |
View\<^sub>m (Blinded (Content ((Content vm, Content vd), map (hash_view \<circ> embed_view) subviews)))" | |
for subviews | |
lemma hash_blind_view: "hash_view (blind_view view) = hash_view (embed_view view)" | |
by(cases view) simp | |
primrec blind_transaction :: "transaction \<Rightarrow> transaction\<^sub>m" where | |
"blind_transaction (Transaction cm pm views) = | |
Transaction\<^sub>m (Blinded (Content ((Content cm, Content pm), map (hash_view \<circ> blind_view) views)))" | |
for views | |
lemma hash_blind_transaction: | |
"hash_transaction (blind_transaction transaction) = hash_transaction (embed_transaction transaction)" | |
by(cases transaction)(simp add: hash_blind_view) | |
typedecl participant | |
consts recipients :: "view_metadata \<Rightarrow> participant list" | |
fun view_recipients :: "view\<^sub>m \<Rightarrow> participant set" where | |
"view_recipients (View\<^sub>m (Unblinded ((Unblinded vm, vd), subviews))) = set (recipients vm)" for subviews | |
| "view_recipients _ = {}" \<comment> \<open>Sane default case\<close> | |
context fixes participant :: participant begin | |
definition view_trees_for :: "view \<Rightarrow> view\<^sub>m list" where | |
"view_trees_for view = | |
map view_of_zipper\<^sub>m | |
(filter (\<lambda>(_, t). participant \<in> view_recipients t) | |
(zippers_view ([], view)))" | |
primrec transaction_views_for :: "transaction \<Rightarrow> transaction\<^sub>m list" where | |
"transaction_views_for (Transaction cm pm views) = | |
map (\<lambda>view\<^sub>m. Transaction\<^sub>m (Unblinded ((Unblinded cm, Unblinded pm), view\<^sub>m))) | |
(concat (map (\<lambda>(l, v, r). map (\<lambda>v\<^sub>m. map blind_view l @ [v\<^sub>m] @ map blind_view r) (view_trees_for v)) (splits views)))" | |
for views | |
lemma view_trees_for_same_hash: | |
"vt \<in> set (view_trees_for view) \<Longrightarrow> hash_view vt = hash_view (embed_view view)" | |
by(auto simp add: view_trees_for_def dest: zippers_view_same_hash) | |
lemma transaction_views_for_same_hash: | |
"t\<^sub>m \<in> set (transaction_views_for t) \<Longrightarrow> hash_transaction t\<^sub>m = hash_transaction (embed_transaction t)" | |
by(cases t)(clarsimp simp add: splits_iff hash_blind_view view_trees_for_same_hash) | |
definition transaction_projection_for :: "transaction \<Rightarrow> transaction\<^sub>m" where | |
"transaction_projection_for t = | |
(let tvs = transaction_views_for t | |
in if tvs = [] then blind_transaction t else the (transaction.Merge (set tvs)))" | |
lemma transaction_projection_for_same_hash: | |
"hash_transaction (transaction_projection_for t) = hash_transaction (embed_transaction t)" | |
proof(cases "transaction_views_for t = []") | |
case True thus ?thesis by(simp add: transaction_projection_for_def Let_def hash_blind_transaction) | |
next | |
case False | |
then have "transaction.Merge (set (transaction_views_for t)) \<noteq> None" | |
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash) | |
with False show ?thesis | |
apply(clarsimp simp add: transaction_projection_for_def neq_Nil_conv simp del: transaction.Merge_insert) | |
apply(drule transaction.Merge_hash[symmetric], blast) | |
apply(auto intro: transaction_views_for_same_hash) | |
done | |
qed | |
lemma transaction_projection_for_upper: | |
assumes "t\<^sub>m \<in> set (transaction_views_for t)" | |
shows "blinding_of_transaction t\<^sub>m (transaction_projection_for t)" | |
proof - | |
from assms have "transaction.Merge (set (transaction_views_for t)) \<noteq> None" | |
by(intro transaction.Merge_defined)(auto simp add: transaction_views_for_same_hash) | |
with assms show ?thesis | |
by(auto simp add: transaction_projection_for_def Let_def dest: transaction.Merge_upper) | |
qed | |
end | |
end |