Create generate_gt.py
Browse files- generate_gt.py +443 -0
generate_gt.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from functools import partial
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
import glob
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
from sklearn.neighbors import KDTree
|
9 |
+
from collections import Counter
|
10 |
+
from PIL import Image
|
11 |
+
from mmengine import track_parallel_progress
|
12 |
+
|
13 |
+
|
14 |
+
def load_voxels(path):
|
15 |
+
"""Load voxel labels from file.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
path (str): The path of the voxel labels file.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
ndarray: The voxel labels with shape (N, 4), 4 is for [x, y, z, label].
|
22 |
+
"""
|
23 |
+
labels = np.load(path)
|
24 |
+
if labels.shape[1] == 7:
|
25 |
+
labels = labels[:, [0, 1, 2, 6]]
|
26 |
+
|
27 |
+
return labels
|
28 |
+
|
29 |
+
|
30 |
+
def _downsample_label(label, voxel_size=(240, 144, 240), downscale=4):
|
31 |
+
r"""downsample the labeled data,
|
32 |
+
code taken from https://github.com/waterljwant/SSC/blob/master/dataloaders/dataloader.py#L262
|
33 |
+
Shape:
|
34 |
+
label, (240, 144, 240)
|
35 |
+
label_downscale, if downsample==4, then (60, 36, 60)
|
36 |
+
"""
|
37 |
+
if downscale == 1:
|
38 |
+
return label
|
39 |
+
ds = downscale
|
40 |
+
small_size = (
|
41 |
+
voxel_size[0] // ds,
|
42 |
+
voxel_size[1] // ds,
|
43 |
+
voxel_size[2] // ds,
|
44 |
+
) # small size
|
45 |
+
label_downscale = np.zeros(small_size, dtype=np.uint8)
|
46 |
+
empty_t = 0.95 * ds * ds * ds # threshold
|
47 |
+
s01 = small_size[0] * small_size[1]
|
48 |
+
label_i = np.zeros((ds, ds, ds), dtype=np.int32)
|
49 |
+
|
50 |
+
for i in range(small_size[0] * small_size[1] * small_size[2]):
|
51 |
+
z = int(i / s01)
|
52 |
+
y = int((i - z * s01) / small_size[0])
|
53 |
+
x = int(i - z * s01 - y * small_size[0])
|
54 |
+
|
55 |
+
label_i[:, :, :] = label[
|
56 |
+
x * ds : (x + 1) * ds, y * ds : (y + 1) * ds, z * ds : (z + 1) * ds
|
57 |
+
]
|
58 |
+
label_bin = label_i.flatten()
|
59 |
+
|
60 |
+
zero_count_0 = np.array(np.where(label_bin == 0)).size
|
61 |
+
zero_count_255 = np.array(np.where(label_bin == 255)).size
|
62 |
+
|
63 |
+
zero_count = zero_count_0 + zero_count_255
|
64 |
+
if zero_count > empty_t:
|
65 |
+
label_downscale[x, y, z] = 0 if zero_count_0 > zero_count_255 else 255
|
66 |
+
else:
|
67 |
+
label_i_s = label_bin[
|
68 |
+
np.where(np.logical_and(label_bin > 0, label_bin < 255))
|
69 |
+
]
|
70 |
+
label_downscale[x, y, z] = np.argmax(np.bincount(label_i_s))
|
71 |
+
return label_downscale
|
72 |
+
|
73 |
+
|
74 |
+
# 1. 从列表中删掉 pose 为 nan 的场景
|
75 |
+
def clear_posed_images(scene_list):
|
76 |
+
|
77 |
+
# 从 mmdet3d 处理得到的有问题场景sens列表
|
78 |
+
# TODO: how to generate wrong_scenes.txt?
|
79 |
+
with open('wrong_scenes.txt', 'r') as f:
|
80 |
+
wrongs = f.readlines()
|
81 |
+
# TODO: how to generate not_aligns.txt?
|
82 |
+
with open('not_aligns.txt', 'r') as f:
|
83 |
+
not_aligns = f.readlines()
|
84 |
+
|
85 |
+
# 清理为只有场景名称
|
86 |
+
wrongs = [w.split('/')[1] for w in wrongs]
|
87 |
+
wrongs = sorted(list(set(wrongs))) # 212 scenes
|
88 |
+
|
89 |
+
not_aligns = sorted([s.strip() for s in not_aligns])
|
90 |
+
|
91 |
+
# 除去这些场景的图片
|
92 |
+
scene_list = sorted(list(set(scene_list) - set(wrongs)))
|
93 |
+
scene_list = sorted(list(set(scene_list) - set(not_aligns)))
|
94 |
+
|
95 |
+
return scene_list
|
96 |
+
|
97 |
+
|
98 |
+
# 2. 生成子场景的体素标签
|
99 |
+
def generate_subvoxels(name):
|
100 |
+
# print(name)
|
101 |
+
|
102 |
+
# basic scene parameters
|
103 |
+
height_belowfloor = - 0.05
|
104 |
+
voxUnit = 0.08 # 0.05 m
|
105 |
+
voxSizeCam = np.array([60, 60, 60]) # 96 x 96 x 96 voxs x y z in cam coordinate
|
106 |
+
voxSize = np.array([60, 60, 36]) # 96 x 96 x 64 voxs x y z in world coordinate
|
107 |
+
voxRangeExtremesCam = np.stack([-voxSizeCam * voxUnit / 2.,
|
108 |
+
-voxSizeCam * voxUnit / 2. + voxSizeCam * voxUnit]).T
|
109 |
+
voxRangeExtremesCam[-1, 0] = 0
|
110 |
+
voxRangeExtremesCam[-1, 1] = 6.8
|
111 |
+
# voxel origin in cam coordinate x y z in cam coordinate
|
112 |
+
voxOriginCam = np.mean(voxRangeExtremesCam, axis=1, keepdims=True)
|
113 |
+
|
114 |
+
# for name in tqdm(scenes_name):
|
115 |
+
poses = glob.glob(os.path.join('../scannet/posed_images', name, '*.txt'))
|
116 |
+
poses = sorted(poses)
|
117 |
+
if len(poses) == 0:
|
118 |
+
return
|
119 |
+
|
120 |
+
imgs = glob.glob(os.path.join('../scannet/posed_images', name, '*.jpg'))
|
121 |
+
imgs = sorted(imgs)
|
122 |
+
|
123 |
+
intrinsic = poses.pop(-1)
|
124 |
+
intrinsic = np.loadtxt(intrinsic)
|
125 |
+
|
126 |
+
for pose, img in zip(poses, imgs):
|
127 |
+
framename = os.path.basename(pose)[:-4]
|
128 |
+
extCam2World = np.loadtxt(pose)
|
129 |
+
# if os.path.exists(f'preprocessed_voxels/{name}/{framename}.npy'):
|
130 |
+
# continue
|
131 |
+
if np.isneginf(extCam2World).any():
|
132 |
+
continue
|
133 |
+
img = cv2.imread(img)
|
134 |
+
h, w, c = img.shape
|
135 |
+
|
136 |
+
voxOriginWorld = extCam2World[:3, :3] @ voxOriginCam + extCam2World[:3, -1:]
|
137 |
+
delta = np.array([[voxSize[0]/2*voxUnit], [voxSize[1]/2*voxUnit], [voxSize[2]/2*voxUnit]])
|
138 |
+
voxOriginWorld -= delta
|
139 |
+
voxOriginWorld[2, 0] = height_belowfloor
|
140 |
+
|
141 |
+
if os.path.exists(f"../completescannet/preprocessed/{name}.npy"):
|
142 |
+
scene_voxels = load_voxels(f"../completescannet/preprocessed/{name}.npy")
|
143 |
+
else:
|
144 |
+
continue
|
145 |
+
scene_voxels_delta = np.abs(scene_voxels[:, :3] - voxOriginWorld.reshape(-1)) # TODO: abs? or 0<=x<=4.8
|
146 |
+
mask = np.logical_and(scene_voxels_delta[:, 0] <=4.8,
|
147 |
+
np.logical_and(scene_voxels_delta[:, 1] <= 4.8,
|
148 |
+
scene_voxels_delta[:, 2] <= 4.8))
|
149 |
+
voxels = scene_voxels[mask]
|
150 |
+
|
151 |
+
xs = np.arange(voxOriginWorld[0, 0], voxOriginWorld[0, 0] + 100*voxUnit, voxUnit)[:voxSize[0]]
|
152 |
+
ys = np.arange(voxOriginWorld[1, 0], voxOriginWorld[1, 0] + 100*voxUnit, voxUnit)[:voxSize[1]]
|
153 |
+
zs = np.arange(voxOriginWorld[2, 0], voxOriginWorld[2, 0] + 100*voxUnit, voxUnit)[:voxSize[2]]
|
154 |
+
gridPtsWorldX, gridPtsWorldY, gridPtsWorldZ = np.meshgrid(xs, ys, zs)
|
155 |
+
gridPtsWorld = np.stack([gridPtsWorldX.flatten(),
|
156 |
+
gridPtsWorldY.flatten(),
|
157 |
+
gridPtsWorldZ.flatten()], axis=1)
|
158 |
+
|
159 |
+
gridPtsLabel = np.zeros((gridPtsWorld.shape[0]))
|
160 |
+
|
161 |
+
if voxels.shape[0] <= 0:
|
162 |
+
continue
|
163 |
+
|
164 |
+
kdtree = KDTree(voxels[:, :3], leaf_size=10)
|
165 |
+
dist, ind = kdtree.query(gridPtsWorld)
|
166 |
+
dist, ind = dist.reshape(-1), ind.reshape(-1)
|
167 |
+
mask = dist <= voxUnit
|
168 |
+
gridPtsLabel[mask] = voxels[:, -1][ind[mask]]
|
169 |
+
|
170 |
+
gridPtsWorld = np.hstack([gridPtsWorld, gridPtsLabel.reshape(-1, 1)])
|
171 |
+
|
172 |
+
g = gridPtsWorld[:, -1].reshape(voxSize[0], voxSize[1], voxSize[2])
|
173 |
+
g_not_0 = np.where(g > 0)
|
174 |
+
if len(g_not_0) == 0:
|
175 |
+
continue
|
176 |
+
g_not_0_x = g_not_0[0]
|
177 |
+
g_not_0_y = g_not_0[1]
|
178 |
+
if len(g_not_0_x) == 0:
|
179 |
+
continue
|
180 |
+
if len(g_not_0_y) == 0:
|
181 |
+
continue
|
182 |
+
valid_x_min = g_not_0_x.min()
|
183 |
+
valid_x_max = g_not_0_x.max()
|
184 |
+
valid_y_min = g_not_0_y.min()
|
185 |
+
valid_y_max = g_not_0_y.max()
|
186 |
+
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
|
187 |
+
# print(valid_x_min, valid_x_max, valid_y_min, valid_y_max)
|
188 |
+
mask = np.zeros_like(g)
|
189 |
+
if valid_x_min != valid_x_max and valid_y_min != valid_y_max:
|
190 |
+
mask[valid_x_min:valid_x_max, valid_y_min:valid_y_max, :] = 1
|
191 |
+
mask = 1 - mask #
|
192 |
+
mask = mask.astype(np.bool_)
|
193 |
+
g[mask] = 255
|
194 |
+
else:
|
195 |
+
continue
|
196 |
+
gridPtsWorld[:, -1] = g.reshape(-1)
|
197 |
+
|
198 |
+
voxels_cam = (np.linalg.inv(extCam2World)[:3, :3] @ gridPtsWorld[:, :3].T \
|
199 |
+
+ np.linalg.inv(extCam2World)[:3, -1:]).T
|
200 |
+
voxels_pix = (intrinsic[:3, :3] @ voxels_cam.T).T
|
201 |
+
voxels_pix = voxels_pix / voxels_pix[:, -1:]
|
202 |
+
mask = np.logical_and(voxels_pix[:, 0] >= 0,
|
203 |
+
np.logical_and(voxels_pix[:, 0] < w,
|
204 |
+
np.logical_and(voxels_pix[:, 1] >= 0,
|
205 |
+
np.logical_and(voxels_pix[:, 1] < h,
|
206 |
+
voxels_cam[:, 2] > 0))))
|
207 |
+
inroom = gridPtsWorld[:, -1] != 255
|
208 |
+
mask = np.logical_and(~mask, inroom)
|
209 |
+
gridPtsWorld[mask, -1] = 0
|
210 |
+
|
211 |
+
|
212 |
+
os.makedirs(f'preprocessed_voxels/{name}', exist_ok=True)
|
213 |
+
np.save(f'preprocessed_voxels/{name}/{framename}.npy', gridPtsWorld)
|
214 |
+
# print("Save gt to", f'preprocessed_voxels/{name}/{framename}.npy')
|
215 |
+
|
216 |
+
|
217 |
+
# 3. 生成那些类别少于2, 有效语义体素数量少于5%的场景 和相机位姿还是有错误的那些场景
|
218 |
+
def get_badposescene():
|
219 |
+
bad_scenes = []
|
220 |
+
scenenames = glob.glob(os.path.join('../completescannet/preprocessed', '*.npy'))
|
221 |
+
scenenames = sorted(scenenames)
|
222 |
+
for name in tqdm(scenenames):
|
223 |
+
voxels = load_voxels(name)
|
224 |
+
voxelrange = [voxels[:, 0].min(),
|
225 |
+
voxels[:, 1].min(),
|
226 |
+
voxels[:, 2].min(),
|
227 |
+
voxels[:, 0].max(),
|
228 |
+
voxels[:, 1].max(),
|
229 |
+
voxels[:, 2].max(),]
|
230 |
+
print('vox range: ', voxelrange)
|
231 |
+
basename = os.path.basename(name)[:-4]
|
232 |
+
|
233 |
+
npys = glob.glob(os.path.join('preprocessed_voxels', basename, '*.npy'))
|
234 |
+
npys = sorted(npys)
|
235 |
+
|
236 |
+
for npy in npys:
|
237 |
+
jpg = os.path.basename(npy)[:-4]+'.txt'
|
238 |
+
cam_pose_path = os.path.join('../scannet/posed_images', basename, jpg)
|
239 |
+
cam_pose = np.loadtxt(cam_pose_path)
|
240 |
+
cam_origin = (cam_pose[:3, :3] @ np.zeros((1, 3)).T + cam_pose[:3, -1:]).T
|
241 |
+
print('cam_o: ', cam_origin)
|
242 |
+
|
243 |
+
x, y, z = cam_origin[0]
|
244 |
+
xmin, ymin, zmin, xmax, ymax, zmax = voxelrange
|
245 |
+
zmax = 3.0
|
246 |
+
|
247 |
+
in_x = xmin < x < xmax
|
248 |
+
in_y = ymin < y < ymax
|
249 |
+
in_z = zmin < z < zmax
|
250 |
+
|
251 |
+
valid = in_x & in_y & in_z
|
252 |
+
|
253 |
+
if not valid:
|
254 |
+
bad_scenes.append(npy)
|
255 |
+
bad_scenes.append('\n')
|
256 |
+
# with open('bad_scenes.txt', 'w') as f:
|
257 |
+
# f.writelines(bad_scenes)
|
258 |
+
# pprint(bad_scenes)
|
259 |
+
scene_path = os.path.join('preprocessed_voxels', name)
|
260 |
+
npys = glob.glob(os.path.join(scene_path, '*.npy'))
|
261 |
+
npys = sorted(npys)
|
262 |
+
for vox in npys:
|
263 |
+
voxels = np.load(vox)
|
264 |
+
labels = voxels[:, -1].tolist()
|
265 |
+
cnt = Counter(labels)
|
266 |
+
total = 0
|
267 |
+
valid = 0
|
268 |
+
for i in cnt.keys():
|
269 |
+
total += cnt[i]
|
270 |
+
if i != 0.0 and i != 255.0:
|
271 |
+
valid += 1
|
272 |
+
outroom = cnt[255.0]
|
273 |
+
empty = cnt[0.0]
|
274 |
+
if valid < 2:
|
275 |
+
bad_scenes.append(vox)
|
276 |
+
continue
|
277 |
+
|
278 |
+
if (outroom / total) > 0.95:
|
279 |
+
bad_scenes.append(vox)
|
280 |
+
continue
|
281 |
+
|
282 |
+
if (empty / total) > 0.95:
|
283 |
+
bad_scenes.append(vox)
|
284 |
+
continue
|
285 |
+
|
286 |
+
if ((empty + outroom) / total) > 0.95:
|
287 |
+
bad_scenes.append(vox)
|
288 |
+
continue
|
289 |
+
with open('bad_scenes.txt', 'w') as f:
|
290 |
+
f.writelines(bad_scenes)
|
291 |
+
# print(bad_scenes)
|
292 |
+
|
293 |
+
|
294 |
+
# 4. 整合数据
|
295 |
+
def gather_data(scene_list):
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
scenes = os.listdir('preprocessed_voxels')
|
300 |
+
scenes = set(sorted(scenes))
|
301 |
+
scenes = sorted(list(set(scene_list) & scenes))
|
302 |
+
|
303 |
+
for scene in scenes:
|
304 |
+
scene_path = os.path.join('preprocessed_voxels', scene)
|
305 |
+
scene_name = scene
|
306 |
+
|
307 |
+
os.makedirs(os.path.join('gathered_data', scene_name), exist_ok=True)
|
308 |
+
|
309 |
+
npys = glob.glob(os.path.join(scene_path, '*.npy'))
|
310 |
+
npys = sorted(npys)
|
311 |
+
|
312 |
+
for npy in npys:
|
313 |
+
data = {}
|
314 |
+
npy_name = os.path.basename(npy)[:-4]
|
315 |
+
npy_path = npy
|
316 |
+
|
317 |
+
img_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.jpg')
|
318 |
+
img_path = os.path.abspath(img_path)
|
319 |
+
depth_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.png')
|
320 |
+
depth_path = os.path.abspath(depth_path)
|
321 |
+
cam_pose_path = os.path.join('../scannet/posed_images', scene_name, npy_name+'.txt')
|
322 |
+
cam_intrin_path = os.path.join('../scannet/posed_images', scene_name, 'intrinsic.txt')
|
323 |
+
|
324 |
+
img = cv2.imread(img_path)
|
325 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
326 |
+
depth_img = Image.open(depth_path).convert('I;16')
|
327 |
+
depth_img = np.array(depth_img) / 1000.0
|
328 |
+
data['img'] = img_path
|
329 |
+
data['depth_gt'] = depth_path
|
330 |
+
cam_pose = np.loadtxt(cam_pose_path)
|
331 |
+
data['cam_pose'] = cam_pose
|
332 |
+
intrinsic = np.loadtxt(cam_intrin_path)
|
333 |
+
data['intrinsic'] = intrinsic
|
334 |
+
|
335 |
+
target_1_4 = np.load(npy_path)
|
336 |
+
data['target_1_4'] = target_1_4[:, -1].reshape(60, 60, 36)
|
337 |
+
|
338 |
+
voxel_origin = target_1_4[:, 0].min(), target_1_4[:, 1].min(), target_1_4[:, 2].min()
|
339 |
+
data['voxel_origin'] = voxel_origin
|
340 |
+
|
341 |
+
target_1_16 = _downsample_label(target_1_4[:, -1].reshape(60, 60, 36), (60, 60, 36), 4)
|
342 |
+
data['target_1_16'] = target_1_16
|
343 |
+
|
344 |
+
savepth = os.path.join('gathered_data', scene_name, npy_name+'.pkl')
|
345 |
+
print(savepth)
|
346 |
+
with open(savepth, "wb") as handle:
|
347 |
+
import pickle
|
348 |
+
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
349 |
+
# np.save(savepth, data)
|
350 |
+
|
351 |
+
|
352 |
+
def generate_train_val_list():
|
353 |
+
with open('not_aligns.txt', 'r') as f:
|
354 |
+
not_aligns = f.readlines()
|
355 |
+
for i in range(len(not_aligns)):
|
356 |
+
not_aligns[i] = not_aligns[i].strip()
|
357 |
+
|
358 |
+
scan_names = os.listdir('gathered_data')
|
359 |
+
start = len(scan_names)
|
360 |
+
scan_names = list(set(scan_names) - set(not_aligns))
|
361 |
+
end = len(scan_names)
|
362 |
+
|
363 |
+
used_scan_names = sorted(scan_names)
|
364 |
+
used_scan_names.pop(-1)
|
365 |
+
with open('used_scan_names.txt', 'w') as f:
|
366 |
+
f.writelines('\n'.join(used_scan_names))
|
367 |
+
|
368 |
+
train_used_subscenes = []
|
369 |
+
val_used_subscenes = []
|
370 |
+
for s in used_scan_names:
|
371 |
+
paths = glob.glob(os.path.join('gathered_data', s, '*.pkl'))
|
372 |
+
paths = sorted(paths)
|
373 |
+
np.random.seed(21)
|
374 |
+
paths = np.random.permutation(paths)
|
375 |
+
n_paths = len(paths)
|
376 |
+
n_train = int(n_paths * 0.7)
|
377 |
+
train_paths = paths[:n_train]
|
378 |
+
val_paths = paths[n_train:]
|
379 |
+
|
380 |
+
train_used_subscenes.extend(train_paths)
|
381 |
+
val_used_subscenes.extend(val_paths)
|
382 |
+
|
383 |
+
with open('train_subscenes.txt', 'w') as f:
|
384 |
+
f.writelines('\n'.join(sorted(train_used_subscenes)))
|
385 |
+
with open('val_subscenes.txt', 'w') as f:
|
386 |
+
f.writelines('\n'.join(sorted(val_used_subscenes)))
|
387 |
+
|
388 |
+
|
389 |
+
def parse_args():
|
390 |
+
parser = argparse.ArgumentParser(description='Prepare for the ScanNetOcc Dataset.')
|
391 |
+
parser.add_argument('--outpath', type=str, required=False, help='Output path of the generated GT labels.')
|
392 |
+
args = parser.parse_args()
|
393 |
+
return args
|
394 |
+
|
395 |
+
|
396 |
+
def main():
|
397 |
+
# args = parse_args()
|
398 |
+
# if not os.path.exists(args.outpath):
|
399 |
+
# os.makedirs(args.outpath, exist_ok=True)
|
400 |
+
|
401 |
+
scene_name_list = sorted(os.listdir('../scannet/posed_images'))
|
402 |
+
|
403 |
+
# scene_name_list = sorted(list(set(scene_name_list) - set(not_aligns)))
|
404 |
+
|
405 |
+
failed_scene = []
|
406 |
+
|
407 |
+
# Step 1:
|
408 |
+
scene_name_list = clear_posed_images(scene_name_list)
|
409 |
+
print("===== Finish Step 1 =====")
|
410 |
+
|
411 |
+
# Step 2:
|
412 |
+
track_parallel_progress(generate_subvoxels,
|
413 |
+
scene_name_list,
|
414 |
+
nproc=12)
|
415 |
+
print("===== Finish Step 2 =====")
|
416 |
+
|
417 |
+
# # Step 3:
|
418 |
+
# TODO: what is bad pose scene?
|
419 |
+
get_badposescene()
|
420 |
+
with open('bad_scenes.txt', 'r') as f:
|
421 |
+
bs = f.readlines()
|
422 |
+
bs = [b.strip() for b in bs]
|
423 |
+
bs = list(set(bs))
|
424 |
+
# TODO: Remove or not?
|
425 |
+
for s in bs:
|
426 |
+
ss = s.replace('\n', '')
|
427 |
+
print(ss, "to be removed")
|
428 |
+
# path = os.path.join(*ss)
|
429 |
+
# print(path)
|
430 |
+
os.remove(ss)
|
431 |
+
print("===== Finish Step 3 =====")
|
432 |
+
|
433 |
+
# Step 4:
|
434 |
+
gather_data(scene_name_list)
|
435 |
+
print("===== Finish Step 4 =====")
|
436 |
+
|
437 |
+
# Step 5:
|
438 |
+
generate_train_val_list()
|
439 |
+
print("===== Finish Step 5 =====")
|
440 |
+
|
441 |
+
|
442 |
+
if __name__ == "__main__":
|
443 |
+
main()
|