Create preprocess_gt.py
Browse files- preprocess_gt.py +40 -0
preprocess_gt.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from plyfile import PlyData
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
def preprocess(gt_path, save_path):
|
8 |
+
"""Preprocess the CompleteScanNet dataset gt labels.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
gt_path (str): Path to `CompleteScanNet_GT` directory.
|
12 |
+
save_path (str): Path where the preprocessed gt labels to be saved. The preprocessed labels
|
13 |
+
is a ndarray each with shape (N, 7), N is for voxels number, 7 is for [x, y, z, r, g, b, label].
|
14 |
+
"""
|
15 |
+
os.makedirs(save_path, exist_ok=True)
|
16 |
+
ply_paths = os.listdir(gt_path)
|
17 |
+
for p in tqdm(ply_paths, desc="Preprocessing gt labels: ", colour='green'):
|
18 |
+
pth = os.path.join(gt_path, p)
|
19 |
+
|
20 |
+
ply_data = PlyData.read(pth)
|
21 |
+
vertex = ply_data['vertex']
|
22 |
+
new_xs = np.array(vertex['z'])
|
23 |
+
new_ys = np.array(vertex['x'])
|
24 |
+
new_zs = np.array(vertex['y'])
|
25 |
+
new_rs = np.array(vertex['red'])
|
26 |
+
new_gs = np.array(vertex['green'])
|
27 |
+
new_bs = np.array(vertex['blue'])
|
28 |
+
new_labels = np.array(vertex['label'])
|
29 |
+
voxels = np.stack([new_xs, new_ys, new_zs, new_rs, new_gs, new_bs, new_labels], axis=1)
|
30 |
+
|
31 |
+
filename = os.path.join(save_path, p)
|
32 |
+
filename = filename.replace('ply', 'npy')
|
33 |
+
with open(filename, 'wb') as fp:
|
34 |
+
np.save(fp, voxels)
|
35 |
+
|
36 |
+
|
37 |
+
if __name__ == "__main__":
|
38 |
+
gt = os.getenv["COMPLETE_SCANNET_GT_PATH"]
|
39 |
+
preprocessed = os.getenv["COMPLETE_SCANNET_PREPROCESS_PATH"]
|
40 |
+
preprocess(gt, preprocessed)
|