File size: 4,689 Bytes
e87f7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519a5d3
a903c41
 
 
e62bc87
 
a903c41
 
 
 
 
 
 
 
e62bc87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os
from typing import List
import datasets
import logging


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {TidyTuesday for Python},
author={Holly Cui
},
year={2024}
}
"""


_DESCRIPTION = """\
This dataset compiles TidyTuesday datasets from 2023-2024, aiming to make resources in the R community more accessible for Python users.
"""


_HOMEPAGE = ""


_LICENSE = ""


_URLS = {
    "train": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_train.json",
    "validation": "https://raw.githubusercontent.com/hollyyfc/tidytuesday-for-python/main/tidytuesday_json_val.json",
}


class TidyTuesdayPython(datasets.GeneratorBasedBuilder):

    _URLS = _URLS
    VERSION = datasets.Version("1.1.0")


    def _info(self):

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "date_posted": datasets.Value("string"),
                    "project_name": datasets.Value("string"),
                    "project_source": datasets.features.Sequence(datasets.Value("string")),
                    "description": datasets.Value("string"),
                    "data_source_url": datasets.Value("string"),
                    "data_dictionary": datasets.features.Sequence(
                        {
                            "variable": datasets.Value("string"),
                            "class": datasets.Value("string"),
                            "description": datasets.Value("string"),
                        }
                    ),
                    "data": datasets.features.Sequence(
                        {
                            "file_name": datasets.Value("string"),
                            "file_url": datasets.Value("string"),
                        }
                    ),
                    "data_load": datasets.features.Sequence(
                        {
                            "file_name": datasets.Value("string"),
                            "load_url": datasets.Value("string"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both premise
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": downloaded_files["train"]
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": downloaded_files["validation"]
                }
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath):
        logging.info("generating examples from = %s", filepath)
        with open(filepath, "r") as j:
            tidytuesday_json = json.load(j)
            
            for record in tidytuesday_json:
                id_ = record['date_posted']
                yield id_, record
                '''
                yield id_, {
                    "project_name": record["project_name"],
                    "project_source": record["project_source"],
                    "description": record["description"],
                    "data_source_url": record["data_source_url"],
                    "data_dictionary": record["data_dictionary"],
                    "data": record["data"],
                }
                '''