File size: 4,720 Bytes
aef7e7c 7823e79 aef7e7c 7823e79 aef7e7c 7823e79 aef7e7c f49d0b3 aef7e7c 7823e79 aef7e7c 1255f06 aef7e7c 0aa8f66 216c599 7823e79 216c599 7823e79 aef7e7c ebaa43f 12830b1 ebaa43f 7823e79 ebaa43f aef7e7c 1255f06 7823e79 aef7e7c 7823e79 aef7e7c 27001f3 f9da925 aef7e7c 388463b 7823e79 388463b bb11c60 9c3d9b9 8cf7f85 9c3d9b9 388463b d0319c4 7176094 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import collections
import json
import os
import datasets
_DESCRIPTION='SkyScenes, a synthetic dataset of densely annotated aerial images captured from Unmanned Aerial Vehicle (UAV) perspectives. SkyScenes is curated from CARLA to comprehensively capture diversity across layout (urban and rural maps), weather conditions, times of day, pitch angles and altitudes with corresponding semantic, instance and depth annotations.'
_HOMEPAGE = "skyscenes.github.io"
_LICENSE = "MIT"
# _CITATION = """\
# @misc{ buildings-instance-segmentation_dataset,
# title = { Buildings Instance Segmentation Dataset },
# type = { Open Source Dataset },
# author = { Roboflow Universe Projects },
# howpublished = { \\url{ https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation } },
# url = { https://universe.roboflow.com/roboflow-universe-projects/buildings-instance-segmentation },
# journal = { Roboflow Universe },
# publisher = { Roboflow },
# year = { 2023 },
# month = { jan },
# note = { visited on 2023-01-18 },
# }
# """
_CATEGORIES = ["unlabeled", "building", "fence", "other", "pedestrian", "pole",
"roadline", "road", "sidewalk", "vegetation", "vehicles", "wall",
"trafficsign", "sky", "ground", "bridge", "railtrack", "guardrail",
"trafficlight", "static", "dynamic", "water", "terrain"]
class SKYSCENESConfig(datasets.BuilderConfig):
"""Builder Config for SkyScenes"""
def __init__(self, data_urls, metadata_url, **kwargs):
"""
BuilderConfig for SkyScenes.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(SKYSCENESConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
self.metadata_url = metadata_url
class SKYSCENES(datasets.GeneratorBasedBuilder):
"""satellite-building-segmentation instance segmentation dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
SKYSCENESConfig(
name="full",
description="Full version of skyscenes dataset.",
data_urls="https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/trial_Segment/H_35_P_90/ClearNoon/Town03/Town03.tar.gz",
metadata_url = "https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Images/Town01.txt",)
# SKYSCENESConfig(
# name="mini",
# description="Mini version of satellite-building-segmentation dataset.",
# data_urls=["https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Images/H_15_P_0/ClearNight/Town01.tar.gz","https://huggingface.co/datasets/hoffman-lab/SkyScenes/blob/main/Images/H_15_P_0/ClearNight/Town02.tar.gz","https://huggingface.co/datasets/hoffman-lab/SkyScenes/blob/main/Images/H_15_P_0/ClearNight/Town03.tar.gz","https://huggingface.co/datasets/hoffman-lab/SkyScenes/blob/main/Images/H_15_P_0/ClearNight/Town04.tar.gz",]
# )
]
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
split_metadata_paths = dl_manager.download(self.config.metadata_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": data_files,
"metadata_path": split_metadata_paths,
},
),
]
def _generate_examples(self, images, metadata_path):
"""Generate images and labels for splits."""
# with open(metadata_path, encoding="utf-8") as f:
# files_to_keep = set(f.read().split("\n"))
# print('KEEP',files_to_keep)
# for file_path, file_obj in images:
for filename in os.listdir(images):
filepath = os.path.join(images, filename)
with open(filepath, "rb") as f:
image_bytes = f.read()
# print('FILE',file_path)
# if file_path.startswith(_IMAGES_DIR):
# if file_path[len(_IMAGES_DIR) : -len(".jpg")] in files_to_keep:
# label = file_path.split("/")[2]
yield filepath, {
"image": {"path": filepath, "bytes": image_bytes},
} |