Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,545 Bytes
81449cb
 
 
1fac4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
license: mit
---

# MS MARCO Distillation Scores for Translate-Distill

This repository contains [MS MARCO](https://microsoft.github.io/msmarco/) training 
query-passage scores produced by MonoT5 reranker 
[`unicamp-dl/mt5-13b-mmarco-100k`](https://huggingface.co/unicamp-dl/mt5-13b-mmarco-100k) and
[`castorini/monot5-3b-msmarco-10k`](https://huggingface.co/castorini/monot5-3b-msmarco-10k). 

Each training query is associated with the top-50 passages retrieved by the [ColBERTv2](https://arxiv.org/abs/2112.01488) model. 

Files are gzip compressed and with the naming scheme of `{teacher}-monot5-{msmarco, mmarco}-{qlang}{plang}.jsonl.gz`, 
which indicates the teacher reranker that inferenced using `qlang` queries and `plang` passages from MS MARCO. 
For languages other than English (eng), we use the translated text provided by mmarco and [neuMarco](https://ir-datasets.com/neumarco.html). 


## Usage

We recommand downloading the files to incorporate with the training script in the [PLAID-X](https://github.com/hltcoe/ColBERT-X/tree/plaid-x) codebase. 

## Citation and Bibtex Info

Please cite the following paper if you use the scores. 

```bibtext
@inproceedings{translate-distill,
    author = {Eugene Yang and Dawn Lawrie and James Mayfield and Douglas W. Oard and Scott Miller},
    title = {Translate-Distill: Learning Cross-Language \ Dense Retrieval by Translation and Distillation},
    booktitle = {Proceedings of the 46th European Conference on Information Retrieval (ECIR)},
    year = {2024},
    url = {tba}
}
```