File size: 1,503 Bytes
08aa29f fb347f6 0e1cee8 fb347f6 08aa29f 0e1cee8 08aa29f c781ed3 08aa29f c781ed3 14ed827 08aa29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
This is a test dataset.
"""
_URLS = {
"train": "https://huggingface.co/datasets/hf-internal-testing/dataset_with_script/resolve/main/another_text.txt", # absolute
"dev": "some_text.txt", # relative
}
class Test(datasets.GeneratorBasedBuilder):
"""SQUAD: The Stanford Question Answering Dataset. Version 1.1."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://huggingface.co/datasets/hf-internal-testing/dataset_with_script",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
for _id, line in enumerate(open(filepath, encoding="utf-8")):
yield _id, {"text": line.rstrip()}
|