Datasets:

Languages:
English
ArXiv:
License:
File size: 6,510 Bytes
3176f9b
 
 
 
249a8d7
 
08c1f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eaf3d9
08c1f68
 
 
 
 
 
 
 
 
 
 
 
 
0eaf3d9
08c1f68
 
 
 
 
 
 
 
 
 
 
0eaf3d9
08c1f68
 
249a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eaf3d9
249a8d7
08c1f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eaf3d9
08c1f68
3176f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae31e03
53c5aec
3176f9b
 
 
 
 
 
 
 
 
57b5ef8
3176f9b
57b5ef8
3176f9b
 
 
 
 
44e6832
ae31e03
44e6832
 
 
a348986
 
3176f9b
6d4eafb
3176f9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fc673f
3176f9b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
license: cc-by-nc-sa-4.0
pretty_name: DiPlomat
dataset_info:
- config_name: CQA
  features:
  - name: text
    sequence: string
  - name: speaker
    sequence: string
  - name: gold_statement
    dtype: string
  - name: questions
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 19805284
    num_examples: 15585
  - name: validation
    num_bytes: 1959148
    num_examples: 1559
  - name: test
    num_bytes: 2967746
    num_examples: 2338
  download_size: 25566918
  dataset_size: 24732178
- config_name: NLI_with_context
  features:
  - name: dialogue
    sequence: string
  - name: speaker
    sequence: string
  - name: human answer
    dtype: string
  splits:
  - name: train
    num_bytes: 2977929
    num_examples: 2551
  download_size: 3042193
  dataset_size: 2977929
- config_name: NLI_without_context
  features:
  - name: text
    dtype: string
  - name: hypothesis
    dtype: string
  splits:
  - name: train
    num_bytes: 1095335
    num_examples: 2551
  download_size: 1146864
  dataset_size: 1095335
- config_name: PIR_first
  features:
  - name: text
    sequence: string
  - name: speaker
    sequence: string
  - name: correct_turn_number
    sequence: int64
  splits:
  - name: train
    num_bytes: 3442927
    num_examples: 3341
  - name: validation
    num_bytes: 161433
    num_examples: 168
  - name: test
    num_bytes: 687605
    num_examples: 668
  download_size: 4366468
  dataset_size: 4291965
- config_name: PIR_second
  features:
  - name: text
    sequence: string
  - name: speaker
    sequence: string
  - name: correct_turn_number
    dtype: int64
  - name: label
    dtype: int64
  - name: choice
    sequence: string
  splits:
  - name: train
    num_bytes: 9263111
    num_examples: 5188
  - name: validation
    num_bytes: 399924
    num_examples: 244
  - name: test
    num_bytes: 1890798
    num_examples: 1062
  download_size: 11740508
  dataset_size: 11553833
---
# DiPlomat

<!-- Provide a quick summary of the dataset. -->

Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life 
conversations and is essential for the development of communicative social agents. 
In this paper, we introduce a novel challenge, **DiPlomat**, aiming at benchmarking machines’ capabilities 
on pragmatic reasoning and situated conversational understanding. 
Compared with previous works that treat different figurative expressions 
(e.g. metaphor, sarcasm) as individual tasks, **DiPlomat** provides a cohesive framework 
towards general pragmatic understanding.
## Dataset Details
The **DiPlomat** dataset owns 4,177 data and covers a vocabulary of 48,900 words. 
More than that, human-annotated answers reach an amount of 6,494, 
hold a vocabulary size of 20,000, and cover 5 types of reasoning. 
Along with the dataset, we propose two tasks:  
**Pragmatic Identification and Reasoning (PIR)** and **Conversational Question Answering (CQA)**. Furthermore, we provide the
data that we use for **zero-NLI**.


- **Language(s) (NLP):** [English]
- **License:** [CC BY-NC-SA (Attribution-NonCommercial-ShareAlike)](https://creativecommons.org/licenses/by-nc-sa/4.0/)

### Dataset Sources 

<!-- Provide the basic links for the dataset. -->

- **Repository:** [link](https://github.com/diplomat-dataset/diplomat)
- **Paper:** [DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning](https://arxiv.org/abs/2306.09030)
- **Website:** [link](https://diplomat-dataset.github.io)


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
| Field | Task| 
| --- | --- | 
| ``PIR_first`` | Pragmatic Identification and Reasoning Subtask1| 
| ``PIR_second`` | Pragmatic Identification and Reasoning Subtask2|
| ``CQA`` |  Conversational Question Answering|
| ``NLI_with_context`` | Zero-Shot NLI with context|
| ``NLI_without_context`` | Zero-Shot NLI without context|

**NOTE:** If you'd like to test on the whole PIR task, please don't change the order of PIR Subtask 1's and Subtask 2's test file's data, as both of them are deliberately arranged as the same order.



## Dataset Creation


### Source Data
We leverage the data of [INTERVIEW dataset](https://www.kaggle.com/datasets/shuyangli94/interview-npr-media-dialog-transcripts) collected by 
Majumder et al as our source.
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

### Annotating Process

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
#### Step I. Automatic Selection:
The extensive size of the source dataset introduces redundancy, 
and thus requires automatic measures to alleviate the burden of human annotation. 
Therefore, we employ algorithms and models to perform an initial filtering process.
#### Step II. Fine-grained Annotation:
We leverage Amazon Mechanical Turk to conduct detailed annotations of pragmatic turns within our dialogues. 
Workers participating in the annotation task are instructed to select 
all turns that exhibit a divergence between their literal meaning and their intended meaning. 
Due to the subjective nature of pragmatic reasoning, we request the workers to provide confidence scores 
along with  reasons for their choices.
#### Step III. Human Refinement:
In this process, tasks for workers are formulated as multiple-choice questions. 
Previously collected human-annotated reasons are transformed into choices, utilizing a template format: 
[turn {turn_id}: {reason}]. In addition, to mitigate the impact of careless workers, 
we introduce a distractor choice for each gold choice.




## Citation 

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
```
@inproceedings{li2023diplomat,
    title={DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning},
    author={Hengli Li and Song-Chun Zhu and Zilong Zheng},
    booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    year={2023}
}
```

## Dataset Card Contact

If there is any problem with the dataset, please email [lihengli@stu.pku.edu.cn](mailto: 2000017754@stu.pku.edu.cn).