Datasets:
license: apache-2.0
task_categories:
- feature-extraction
language:
- en
tags:
- Out-of-Distribution Detection
- Multimodal Learning
pretty_name: MultiOOD
size_categories:
- 100K<n<1M
MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities
• arXiv •
MultiOOD is the first-of-its-kind benchmark for Multimodal OOD Detection, characterized by diverse dataset sizes and varying modality combinations.
Code
https://github.com/donghao51/MultiOOD
MultiOOD Benchmark
MultiOOD is based on five public action recognition datasets (HMDB51, UCF101, EPIC-Kitchens, HAC, and Kinetics-600).
Prepare Datasets
- Download HMDB51 video data from link and extract. Download HMDB51 optical flow data from link and extract. The directory structure should be modified to match:
HMDB51
├── video
| ├── catch
| | ├── *.avi
| ├── climb
| | ├── *.avi
| |── ...
├── flow
| ├── *_flow_x.mp4
| ├── *_flow_y.mp4
| ├── ...
- Download UCF101 video data from link and extract. Download UCF101 optical flow data from link and extract. The directory structure should be modified to match:
UCF101
├── video
| ├── *.avi
| |── ...
├── flow
| ├── *_flow_x.mp4
| ├── *_flow_y.mp4
| ├── ...
- Download EPIC-Kitchens video and optical flow data by
bash utils/download_epic_script.sh
Download audio data from link.
Unzip all files and the directory structure should be modified to match:
EPIC-KITCHENS
├── rgb
| ├── train
| | ├── D3
| | | ├── P22_01.wav
| | | ├── P22_01
| | | | ├── frame_0000000000.jpg
| | | | ├── ...
| | | ├── P22_02
| | | ├── ...
| ├── test
| | ├── D3
├── flow
| ├── train
| | ├── D3
| | | ├── P22_01
| | | | ├── frame_0000000000.jpg
| | | | ├── ...
| | | ├── P22_02
| | | ├── ...
| ├── test
| | ├── D3
- Download HAC video, audio and optical flow data from link and extract. The directory structure should be modified to match:
HAC
├── human
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
├── animal
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
├── cartoon
| ├── videos
| | ├── ...
| ├── flow
| | ├── ...
| ├── audio
| | ├── ...
- Download Kinetics-600 video data by
wget -i utils/filtered_k600_train_path.txt
Extract all files and get audio data from video data by
python utils/generate_audio_files.py
Download Kinetics-600 optical flow data (kinetics600_flow_mp4_part_*) from link and extract (run cat kinetics600_flow_mp4_part_* > kinetics600_flow_mp4.tar.gz
and then tar -zxvf kinetics600_flow_mp4.tar.gz
).
Unzip all files and the directory structure should be modified to match:
Kinetics-600
├── video
| ├── acting in play
| | ├── *.mp4
| | ├── *.wav
| |── ...
├── flow
| ├── acting in play
| | ├── *_flow_x.mp4
| | ├── *_flow_y.mp4
| ├── ...
Dataset Splits
The splits for Multimodal Near-OOD and Far-OOD Benchmarks are provided in https://github.com/donghao51/MultiOOD under HMDB-rgb-flow/splits/
for HMDB51, UCF101, HAC, and Kinetics-600, and under EPIC-rgb-flow/splits/
for EPIC-Kitchens.
Methodology
An overview of the proposed framework for Multimodal OOD Detection. We introduce A2D algorithm to encourage enlarging the prediction discrepancy across modalities. Additionally, we propose a novel outlier synthesis algorithm, NP-Mix, designed to explore broader feature spaces, which complements A2D to strengthen the OOD detection performance.
Contact
If you have any questions, please send an email to donghaospurs@gmail.com
Citation
If you find our work useful in your research please consider citing our paper:
@article{dong2024multiood,
author = {Hao Dong and Yue Zhao and Eleni Chatzi and Olga Fink},
title = {{MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities}},
journal = {arXiv preprint arXiv:2405.17419},
year = {2024},
}