File size: 1,805 Bytes
009b302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
task_categories:
- text-classification
language:
- pt
tags:
- NLI
- datasets
pretty_name: InferBR
size_categories:
- 10K<n<100K
dataset_info:
  features:
  - name: sentence_pair_id
    dtype: int64
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': CONTRADICTION
          '1': ENTAILMENT
          '2': NEUTRAL
---

# InferBR

This is the InferBR dataset for Natural Language Inference in Portuguese. This version removes the flagged low-quality samples from the original dataset,
keeping 10.528 samples. The Github repo with the raw data can be found at: https://github.com/lbencke/InferBR.

## Columns

**sentence_pair_id**: Identifier for premise-hypothesis sentence pairs.
**premise**: The premise sentence.
**hypothesis**: The hypothesis sentence.
**label**: The generated label for the hypothesis considering the premise.

    0 – Contradiction
    1 – Entailment
    2 – Neutral




# Citation

@inproceedings{bencke-etal-2024-inferbr-natural,
    title = "{I}nfer{BR}: A Natural Language Inference Dataset in {P}ortuguese",
    author = "Bencke, Luciana  and
      Pereira, Francielle Vasconcellos  and
      Santos, Moniele Kunrath  and
      Moreira, Viviane",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italy",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.793",
    pages = "9050--9060",
}