Datasets:
License:
File size: 6,541 Bytes
cbd07da f29449f 1fed449 cbd07da 66d19d8 cbd07da e7d9870 cbd07da 354abb4 e7d9870 cbd07da 559c814 cbd07da 559c814 cbd07da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Variance-Aware Machine Translation Test Sets"""
import os
import json
import textwrap
from typing import List
import datasets
from datasets.utils.download_manager import DownloadManager
_CITATION = """\
@inproceedings{
zhan2021varianceaware,
title={Variance-Aware Machine Translation Test Sets},
author={Runzhe Zhan and Xuebo Liu and Derek F. Wong and Lidia S. Chao},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems, Datasets and Benchmarks Track},
year={2021},
url={https://openreview.net/forum?id=hhKA5k0oVy5}
}
"""
_DESCRIPTION = """\
The Variance-Aware Machine Translation corpus contains 70 small and discriminative test sets for machine translation (MT)
evaluation called variance-aware test sets (VAT), covering 35 translation directions from WMT16 to WMT20 competitions.
VAT is automatically created by a novel variance-aware filtering method that filters the indiscriminative test instances
of the current MT benchmark without any human labor. Experimental results show that VAT outperforms the original WMT benchmark
in terms of the correlation with human judgment across mainstream language pairs and test sets. Further analysis on the properties
of VAT reveals the challenging linguistic features (e.g., translation of low-frequency words and proper nouns) for the competitive
MT systems, providing guidance for constructing future MT test sets.
"""
_HOMEPAGE = "https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets"
_LICENSE = "https://raw.githubusercontent.com/NLP2CT/Variance-Aware-MT-Test-Sets/main/LICENSE"
_BASE_URL = "https://github.com/NLP2CT/Variance-Aware-MT-Test-Sets/raw/main/VAT_data"
_META_URL = "https://raw.githubusercontent.com/NLP2CT/Variance-Aware-MT-Test-Sets/main/VAT_meta"
_CONFIGS = {
"wmt16": ["tr_en", "ru_en", "ro_en", "de_en", "en_ru", "fi_en", "cs_en"],
"wmt17": ["en_lv", "zh_en", "en_tr", "lv_en", "en_de", "ru_en", "en_fi", "tr_en", "en_zh", "en_ru", "fi_en", "en_cs", "de_en", "cs_en"],
"wmt18": ["en_cs", "cs_en", "en_fi", "en_tr", "en_et", "ru_en", "et_en", "tr_en", "fi_en", "zh_en", "en_zh", "en_ru", "de_en", "en_de"],
"wmt19": ["zh_en", "en_cs", "de_en", "en_gu", "fr_de", "en_zh", "fi_en", "en_fi", "kk_en", "de_cs", "lt_en", "en_lt", "ru_en", "en_kk", "en_ru", "gu_en", "de_fr", "en_de"],
"wmt20": ["km_en", "cs_en", "en_de", "ja_en", "ps_en", "en_zh", "en_ta", "de_en", "zh_en", "en_ja", "en_cs", "en_pl", "en_ru", "pl_en", "iu_en", "ru_en", "ta_en"],
}
_PATHS = {
f"{year}_{pair}": {
"src" : os.path.join(_BASE_URL, year, f"vat_newstest20{year[3:]}-{pair.replace('_', '')}-src.{pair.split('_')[0]}{'.txt' if year == 'wmt20' else ''}"),
"ref" : os.path.join(_BASE_URL, year, f"vat_newstest20{year[3:]}-{pair.replace('_', '')}-ref.{pair.split('_')[1]}{'.txt' if year == 'wmt20' else ''}")
} for year, pairs in _CONFIGS.items() for pair in pairs
}
_METADATA_PATHS = {k:os.path.join(_META_URL, k, "bert-r_filter-std60.json") for k in _CONFIGS.keys()}
class WmtVatConfig(datasets.BuilderConfig):
def __init__(
self,
campaign: str,
source: str,
reference: str,
**kwargs
):
"""BuilderConfig for Variance-Aware MT Test Sets.
Args:
campaign: `str`, WMT campaign from which the test set was extracted
source: `str`, source for translation.
reference: `str`, reference translation.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
self.campaign = campaign
self.source = source
self.reference = reference
class WmtVat(datasets.GeneratorBasedBuilder):
"""Variance-Aware Machine Translation Test Sets"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
WmtVatConfig(
name=cfg,
campaign=cfg.split("_")[0],
source=cfg.split("_")[1],
reference=cfg.split("_")[2],
) for cfg in _PATHS.keys()
]
def _info(self):
features = datasets.Features(
{
"orig_id": datasets.Value("int32"),
"source": datasets.Value("string"),
"reference": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager):
"""Returns SplitGenerators."""
src_file = dl_manager.download_and_extract(_PATHS[self.config.name]["src"])
ref_file = dl_manager.download_and_extract(_PATHS[self.config.name]["ref"])
meta_file = dl_manager.download_and_extract(_METADATA_PATHS[self.config.name[:5]]) # Only wmtXX
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"src_path": src_file,
"ref_path": ref_file,
"pair": self.config.name[6:].replace("_", "-"),
"meta_path": meta_file
},
)
]
def _generate_examples(
self, src_path: str, ref_path: str, pair: str, meta_path: str
):
""" Yields examples as (key, example) tuples. """
with open(meta_path, encoding="utf-8") as meta:
ids = json.load(meta)[pair]
with open(src_path, encoding="utf-8") as src:
with open(ref_path, encoding="utf-8") as ref:
for id_, (src_ex, ref_ex, orig_idx) in enumerate(zip(src, ref, ids)):
yield id_, {
"orig_id": orig_idx,
"source": src_ex.strip(),
"reference": ref_ex.strip(),
} |