gorkemgoknar's picture
Create README.md
fe1ed71
|
raw
history blame
1.11 kB
##Created from ted-multi dataset
adding processing steps here if you want another language
#using Turkish as target
target_lang="tr" # change to your target lang
from datasets import load_dataset
#ted-multi is a multiple language translated dataset
#fits for our case , not to big and curated
dataset = load_dataset("ted_multi")
#there is no Turkish lanugage in europarl, so will need to choose one
dataset.cleanup_cache_files()
#chars_to_ignore_regex = '[,?.!\-\;\:\"β€œ%β€˜β€οΏ½β€”β€™β€¦β€“]' # change to the ignored characters of your fine-tuned model
#will use cahya/wav2vec2-base-turkish-artificial-cv
#checking inside model repository to find which chars removed (no run.sh)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\β€˜\”\'\`…\’»«]'
cols_to_remove = ['translations', 'talk_name']
dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove)
dataset_cleaned = dataset.filter(lambda x: x['text'] is not None)
dataset_cleaned
from huggingface_hub import notebook_login
notebook_login()
dataset_cleaned.push_to_hub(f"{target_lang}_ted_talk_translated")