##Created from ted-multi dataset adding processing steps here if you want another language #using Turkish as target target_lang="tr" # change to your target lang from datasets import load_dataset #ted-multi is a multiple language translated dataset #fits for our case , not to big and curated dataset = load_dataset("ted_multi") #there is no Turkish lanugage in europarl, so will need to choose one dataset.cleanup_cache_files() #chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # change to the ignored characters of your fine-tuned model #will use cahya/wav2vec2-base-turkish-artificial-cv #checking inside model repository to find which chars removed (no run.sh) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]' cols_to_remove = ['translations', 'talk_name'] dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove) dataset_cleaned = dataset.filter(lambda x: x['text'] is not None) dataset_cleaned from huggingface_hub import notebook_login notebook_login() dataset_cleaned.push_to_hub(f"{target_lang}_ted_talk_translated")