Datasets:

Languages:
English
ArXiv:
License:
File size: 7,312 Bytes
c68e203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Speech Commands, an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. """


import textwrap

import datasets


_CITATION = """
@article{speechcommandsv2,
   author = { {Warden}, P.},
    title = "{Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition}",
  journal = {ArXiv e-prints},
  archivePrefix = "arXiv",
  eprint = {1804.03209},
  primaryClass = "cs.CL",
  keywords = {Computer Science - Computation and Language, Computer Science - Human-Computer Interaction},
    year = 2018,
    month = apr,
    url = {https://arxiv.org/abs/1804.03209},
}
"""

_DESCRIPTION = """
This is a set of one-second .wav audio files, each containing a single spoken
English word or background noise. These words are from a small set of commands, and are spoken by a
variety of different speakers. This data set is designed to help train simple
machine learning models. This dataset is covered in more detail at
[https://arxiv.org/abs/1804.03209](https://arxiv.org/abs/1804.03209).

Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3rd 2017 and contains
64,727 audio files.

In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".


In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".

In both versions, ten of them are used as commands by convention: "Yes", "No", "Up", "Down", "Left",
"Right", "On", "Off", "Stop", "Go". Other words are considered to be auxiliary (in current implementation
it is marked by `True` value of `"is_unknown"` feature). Their function is to teach a model to distinguish core words
from unrecognized ones.

The `_silence_` class contains a set of longer audio clips that are either recordings or
a mathematical simulation of noise.

"""

_LICENSE = "Creative Commons BY 4.0 License"

_URL = "https://www.tensorflow.org/datasets/catalog/speech_commands"

_DL_URL = "https://s3.amazonaws.com/datasets.huggingface.co/SpeechCommands/{name}/{name}_{split}.tar.gz"

WORDS = [
    "yes",
    "no",
    "up",
    "down",
    "left",
    "right",
    "on",
    "off",
    "stop",
    "go",
]

UNKNOWN_WORDS_V1 = [
    "zero",
    "one",
    "two",
    "three",
    "four",
    "five",
    "six",
    "seven",
    "eight",
    "nine",
    "bed",
    "bird",
    "cat",
    "dog",
    "happy",
    "house",
    "marvin",
    "sheila",
    "tree",
    "wow",
]

UNKNOWN_WORDS_V2 = UNKNOWN_WORDS_V1 + [
    "backward",
    "forward",
    "follow",
    "learn",
    "visual",
]

SILENCE = "_silence_"  # background noise
LABELS_V1 = WORDS + UNKNOWN_WORDS_V1 + [SILENCE]
LABELS_V2 = WORDS + UNKNOWN_WORDS_V2 + [SILENCE]


class SpeechCommandsConfig(datasets.BuilderConfig):
    """BuilderConfig for SpeechCommands."""

    def __init__(self, labels, **kwargs):
        super(SpeechCommandsConfig, self).__init__(**kwargs)
        self.labels = labels


class SpeechCommands(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        SpeechCommandsConfig(
            name="v0.01",
            description=textwrap.dedent(
                """\
                Version 0.01 of the SpeechCommands dataset. Contains 30 words
                (20 of them are auxiliary) and background noise.
                """
            ),
            labels=LABELS_V1,
            version=datasets.Version("0.1.0"),
        ),
        SpeechCommandsConfig(
            name="v0.02",
            description=textwrap.dedent(
                """\
                Version 0.02 of the SpeechCommands dataset.
                Contains 35 words (25 of them are auxiliary) and background noise.
                """
            ),
            labels=LABELS_V2,
            version=datasets.Version("0.2.0"),
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "audio": datasets.features.Audio(sampling_rate=16_000),
                    "label": datasets.ClassLabel(names=self.config.labels),
                    "is_unknown": datasets.Value("bool"),
                    "speaker_id": datasets.Value("string"),
                    "utterance_id": datasets.Value("int8"),
                }
            ),
            homepage=_URL,
            citation=_CITATION,
            license=_LICENSE,
            version=self.config.version,
        )

    def _split_generators(self, dl_manager):

        archive_paths = dl_manager.download(
            {
                "train": _DL_URL.format(name=self.config.name, split="train"),
                "validation": _DL_URL.format(name=self.config.name, split="validation"),
                "test": _DL_URL.format(name=self.config.name, split="test"),
            }
        )

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(archive_paths["train"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(archive_paths["validation"]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(archive_paths["test"]),
                },
            ),
        ]

    def _generate_examples(self, archive):
        for path, file in archive:
            if not path.endswith(".wav"):
                continue

            word, audio_filename = path.split("/")
            is_unknown = False

            if word == SILENCE:
                speaker_id, utterance_id = None, 0

            else:  # word is either in WORDS or unknown
                if word not in WORDS:
                    is_unknown = True
                # an audio filename looks like `0bac8a71_nohash_0.wav`
                speaker_id, _, utterance_id = audio_filename.split(".wav")[0].split("_")

            yield path, {
                "file": path,
                "audio": {"path": path, "bytes": file.read()},
                "label": word,
                "is_unknown": is_unknown,
                "speaker_id": speaker_id,
                "utterance_id": utterance_id,
            }