File size: 4,478 Bytes
01eb33d 86a85ad 01eb33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Copyright 2022 The CVSS Dataset Authors and the dataset script contributor.
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CVSS speech-to-speech translation corpus."""
import os
import datasets
_HOMEPAGE = 'https://github.com/google-research-datasets/cvss'
_DESCRIPTION = """\
CVSS is a massively multilingual-to-English speech-to-speech translation corpus,
covering sentence-level parallel speech-to-speech translation pairs from 21
languages into English.
"""
_CITATION = """\
@inproceedings{jia2022cvss,
title={{CVSS} Corpus and Massively Multilingual Speech-to-Speech Translation},
author={Jia, Ye and Tadmor Ramanovich, Michelle and Wang, Quan and Zen, Heiga},
booktitle={Proceedings of Language Resources and Evaluation Conference (LREC)},
pages={6691--6703},
year={2022}
}
"""
_ROOT_URL = 'https://storage.googleapis.com/cvss'
_ALL_LANGUAGES = ('de', 'fr', 'es', 'ca', 'it', 'ru', 'zh', 'pt', 'fa', 'et',
'mn', 'nl', 'tr', 'ar', 'sv', 'lv', 'sl', 'ta', 'ja', 'id',
'cy')
def _get_download_urls(name='cvss_c', languages=_ALL_LANGUAGES, version='1.0'):
"""Gets URLs for downloading data.
Args:
name: 'cvss_c' or 'cvss_t'.
languages: An iterable of source languages.
version: Only '1.0' available.
Returns:
A list of URL strs.
"""
return [
f'{_ROOT_URL}/{name}_v{version}/{name}_{x}_en_v{version}.tar.gz'
for x in languages
]
class CVSSConfig(datasets.BuilderConfig):
"""BuilderConfig for CVSS."""
def __init__(self, name, languages='all', **kwargs):
"""BuilderConfig for CVSS.
Args:
name: 'cvss_c' or 'cvss_t'.
languages: A list of source languages.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(name=name, **kwargs)
if languages == 'all':
self.languages = _ALL_LANGUAGES
elif isinstance(languages, str):
self.languages = [languages]
else:
self.languages = languages
class CVSS(datasets.GeneratorBasedBuilder):
"""CVSS dataset. Version 1.0."""
BUILDER_CONFIG_CLASS = CVSSConfig
VERSION = '1.0.0'
DEFAULT_WRITER_BATCH_SIZE = 256
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_HOMEPAGE,
citation=_CITATION,
features=datasets.Features({
'id': datasets.Value('string'),
'file': datasets.Value('string'),
'audio': datasets.Audio(sampling_rate=24_000),
'text': datasets.Value('string'),
}))
def _split_generators(self, dl_manager):
print(self.config)
downloaded_files = dl_manager.download_and_extract(
_get_download_urls(self.config.name, self.config.languages))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'files': downloaded_files,
'split': 'train'
}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
'files': downloaded_files,
'split': 'dev'
}),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
'files': downloaded_files,
'split': 'test'
}),
]
def _generate_examples(self, files, split):
"""Generates examples for each SplitGenerator."""
for path in files:
with open(os.path.join(path, f'{split}.tsv'), 'r', encoding='utf-8') as f:
for line in f:
cols = line.rstrip().split('\t')
assert len(cols) == 2, cols
key, text = cols
audio_path = os.path.join(path, split, f'{key}.wav')
yield key, {
'id': key,
'text': text,
'audio': audio_path,
'file': audio_path,
}
|