Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Size:
100K - 1M
ArXiv:
License:
File size: 10,469 Bytes
512d901 6044eee 512d901 6044eee 512d901 b2d9354 b05d120 55bf7df b05d120 512d901 b05d120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
annotations_creators:
- found
language_creators:
- found
language:
- code
- en
license:
- c-uda
multilinguality:
- other-programming-languages
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- document-retrieval
pretty_name: CodeXGlueTcNlCodeSearchAdv
dataset_info:
features:
- name: id
dtype: int32
- name: repo
dtype: string
- name: path
dtype: string
- name: func_name
dtype: string
- name: original_string
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
sequence: string
- name: docstring
dtype: string
- name: docstring_tokens
sequence: string
- name: sha
dtype: string
- name: url
dtype: string
- name: docstring_summary
dtype: string
- name: parameters
dtype: string
- name: return_statement
dtype: string
- name: argument_list
dtype: string
- name: identifier
dtype: string
- name: nwo
dtype: string
- name: score
dtype: float32
splits:
- name: train
num_bytes: 820716084
num_examples: 251820
- name: validation
num_bytes: 23468834
num_examples: 9604
- name: test
num_bytes: 47433760
num_examples: 19210
download_size: 966025624
dataset_size: 891618678
---
# Dataset Card for "code_x_glue_tc_nl_code_search_adv"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits-sample-size)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
### Dataset Summary
CodeXGLUE NL-code-search-Adv dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-Adv
The dataset we use comes from CodeSearchNet and we filter the dataset as the following:
- Remove examples that codes cannot be parsed into an abstract syntax tree.
- Remove examples that #tokens of documents is < 3 or >256
- Remove examples that documents contain special tokens (e.g. <img ...> or https:...)
- Remove examples that documents are not English.
### Supported Tasks and Leaderboards
- `document-retrieval`: The dataset can be used to train a model for retrieving top-k codes from a given **English** natural language query.
### Languages
- Python **programming** language
- English **natural** language
## Dataset Structure
### Data Instances
An example of 'validation' looks as follows.
```
{
"argument_list": "",
"code": "def Func(arg_0, arg_1='.', arg_2=True, arg_3=False, **arg_4):\n \"\"\"Downloads Dailymotion videos by URL.\n \"\"\"\n\n arg_5 = get_content(rebuilt_url(arg_0))\n arg_6 = json.loads(match1(arg_5, r'qualities\":({.+?}),\"'))\n arg_7 = match1(arg_5, r'\"video_title\"\\s*:\\s*\"([^\"]+)\"') or \\\n match1(arg_5, r'\"title\"\\s*:\\s*\"([^\"]+)\"')\n arg_7 = unicodize(arg_7)\n\n for arg_8 in ['1080','720','480','380','240','144','auto']:\n try:\n arg_9 = arg_6[arg_8][1][\"url\"]\n if arg_9:\n break\n except KeyError:\n pass\n\n arg_10, arg_11, arg_12 = url_info(arg_9)\n\n print_info(site_info, arg_7, arg_10, arg_12)\n if not arg_3:\n download_urls([arg_9], arg_7, arg_11, arg_12, arg_1=arg_1, arg_2=arg_2)",
"code_tokens": ["def", "Func", "(", "arg_0", ",", "arg_1", "=", "'.'", ",", "arg_2", "=", "True", ",", "arg_3", "=", "False", ",", "**", "arg_4", ")", ":", "arg_5", "=", "get_content", "(", "rebuilt_url", "(", "arg_0", ")", ")", "arg_6", "=", "json", ".", "loads", "(", "match1", "(", "arg_5", ",", "r'qualities\":({.+?}),\"'", ")", ")", "arg_7", "=", "match1", "(", "arg_5", ",", "r'\"video_title\"\\s*:\\s*\"([^\"]+)\"'", ")", "or", "match1", "(", "arg_5", ",", "r'\"title\"\\s*:\\s*\"([^\"]+)\"'", ")", "arg_7", "=", "unicodize", "(", "arg_7", ")", "for", "arg_8", "in", "[", "'1080'", ",", "'720'", ",", "'480'", ",", "'380'", ",", "'240'", ",", "'144'", ",", "'auto'", "]", ":", "try", ":", "arg_9", "=", "arg_6", "[", "arg_8", "]", "[", "1", "]", "[", "\"url\"", "]", "if", "arg_9", ":", "break", "except", "KeyError", ":", "pass", "arg_10", ",", "arg_11", ",", "arg_12", "=", "url_info", "(", "arg_9", ")", "print_info", "(", "site_info", ",", "arg_7", ",", "arg_10", ",", "arg_12", ")", "if", "not", "arg_3", ":", "download_urls", "(", "[", "arg_9", "]", ",", "arg_7", ",", "arg_11", ",", "arg_12", ",", "arg_1", "=", "arg_1", ",", "arg_2", "=", "arg_2", ")"],
"docstring": "Downloads Dailymotion videos by URL.",
"docstring_summary": "Downloads Dailymotion videos by URL.",
"docstring_tokens": ["Downloads", "Dailymotion", "videos", "by", "URL", "."],
"func_name": "",
"id": 0,
"identifier": "dailymotion_download",
"language": "python",
"nwo": "soimort/you-get",
"original_string": "",
"parameters": "(url, output_dir='.', merge=True, info_only=False, **kwargs)",
"path": "src/you_get/extractors/dailymotion.py",
"repo": "",
"return_statement": "",
"score": 0.9997601509094238,
"sha": "b746ac01c9f39de94cac2d56f665285b0523b974",
"url": "https://github.com/soimort/you-get/blob/b746ac01c9f39de94cac2d56f665285b0523b974/src/you_get/extractors/dailymotion.py#L13-L35"
}
```
### Data Fields
In the following each data field in go is explained for each config. The data fields are the same among all splits.
#### default
| field name | type | description |
|-----------------|-----------------------|-----------------------------------------------------------------------------------|
|id |int32 | Index of the sample |
|repo |string | repo: the owner/repo |
|path |string | path: the full path to the original file |
|func_name |string | func_name: the function or method name |
|original_string |string | original_string: the raw string before tokenization or parsing |
|language |string | language: the programming language |
|code |string | code/function: the part of the original_string that is code |
|code_tokens |Sequence[string] | code_tokens/function_tokens: tokenized version of code |
|docstring |string | docstring: the top-level comment or docstring, if it exists in the original string|
|docstring_tokens |Sequence[string] | docstring_tokens: tokenized version of docstring |
|sha |string | sha of the file |
|url |string | url of the file |
|docstring_summary|string | Summary of the docstring |
|parameters |string | parameters of the function |
|return_statement |string | return statement |
|argument_list |string | list of arguments of the function |
|identifier |string | identifier |
|nwo |string | nwo |
|score |datasets.Value("float"]| score for this search |
### Data Splits
| name |train |validation|test |
|-------|-----:|---------:|----:|
|default|251820| 9604|19210|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
Data from CodeSearchNet Challenge dataset.
[More Information Needed]
#### Who are the source language producers?
Software Engineering developers.
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
https://github.com/microsoft, https://github.com/madlag
### Licensing Information
Computational Use of Data Agreement (C-UDA) License.
### Citation Information
```
@article{husain2019codesearchnet,
title={Codesearchnet challenge: Evaluating the state of semantic code search},
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
journal={arXiv preprint arXiv:1909.09436},
year={2019}
}
```
### Contributions
Thanks to @madlag (and partly also @ncoop57) for adding this dataset. |