Datasets:

Languages:
English
ArXiv:
License:
File size: 5,546 Bytes
da99b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Taskmaster-3: A goal oriented conversations dataset for movie ticketing domain """


import json

import datasets


_CITATION = """\
@inproceedings{48484,
title	= {Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset},
author	= {Bill Byrne and Karthik Krishnamoorthi and Chinnadhurai Sankar and Arvind Neelakantan and Daniel Duckworth and Semih Yavuz and Ben Goodrich and Amit Dubey and Kyu-Young Kim and Andy Cedilnik},
year	= {2019}
}
"""

_DESCRIPTION = """\
Taskmaster is dataset for goal oriented conversations. The Taskmaster-3 dataset consists of 23,757 movie ticketing dialogs. \
By "movie ticketing" we mean conversations where the customer's goal is to purchase tickets after deciding \
on theater, time, movie name, number of tickets, and date, or opt out of the transaction. This collection \
was created using the "self-dialog" method. This means a single, crowd-sourced worker is \
paid to create a conversation writing turns for both speakers, i.e. the customer and the ticketing agent.
"""

_HOMEPAGE = "https://github.com/google-research-datasets/Taskmaster/tree/master/TM-3-2020"

_BASE_URL = "https://raw.githubusercontent.com/google-research-datasets/Taskmaster/master/TM-3-2020/data"


class Taskmaster3(datasets.GeneratorBasedBuilder):
    """Taskmaster-3: A goal oriented conversations dataset for movie ticketing domain"""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = {
            "conversation_id": datasets.Value("string"),
            "vertical": datasets.Value("string"),
            "instructions": datasets.Value("string"),
            "scenario": datasets.Value("string"),
            "utterances": [
                {
                    "index": datasets.Value("int32"),
                    "speaker": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "apis": [
                        {
                            "name": datasets.Value("string"),
                            "index": datasets.Value("int32"),
                            "args": [
                                {
                                    "arg_name": datasets.Value("string"),
                                    "arg_value": datasets.Value("string"),
                                }
                            ],
                            "response": [
                                {
                                    "response_name": datasets.Value("string"),
                                    "response_value": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                    "segments": [
                        {
                            "start_index": datasets.Value("int32"),
                            "end_index": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                            "annotations": [{"name": datasets.Value("string")}],
                        }
                    ],
                }
            ],
        }
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = [f"{_BASE_URL}/data_{i:02}.json" for i in range(20)]
        dialog_files = dl_manager.download(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"dialog_files": dialog_files},
            ),
        ]

    def _generate_examples(self, dialog_files):
        for filepath in dialog_files:
            with open(filepath, encoding="utf-8") as f:
                dialogs = json.load(f)
                for dialog in dialogs:
                    example = self._prepare_example(dialog)
                    yield example["conversation_id"], example

    def _prepare_example(self, dialog):
        utterances = dialog["utterances"]
        for utterance in utterances:
            if "segments" not in utterance:
                utterance["segments"] = []

            if "apis" in utterance:
                utterance["apis"] = self._transform_apis(utterance["apis"])
            else:
                utterance["apis"] = []
        return dialog

    def _transform_apis(self, apis):
        for api in apis:
            if "args" in api:
                api["args"] = [{"arg_name": k, "arg_value": v} for k, v in api["args"].items()]
            else:
                api["args"] = []

            if "response" in api:
                api["response"] = [{"response_name": k, "response_value": v} for k, v in api["response"].items()]
            else:
                api["response"] = []

        return apis