File size: 12,717 Bytes
c5d3a48
 
 
 
 
 
 
3f1043f
c5d3a48
 
 
 
 
 
 
3f1043f
c5d3a48
 
 
 
 
 
 
 
 
 
 
 
3df9b7c
9b76b67
97fe970
8a04d94
c1eab7f
 
18a9bcf
a334ccd
18a9bcf
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
d046830
18a9bcf
5356104
d046830
5356104
18a9bcf
d046830
18a9bcf
d046830
 
a334ccd
18a9bcf
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
a334ccd
18a9bcf
5356104
a334ccd
5356104
18a9bcf
a334ccd
18a9bcf
a334ccd
 
18a9bcf
 
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
c048ed5
18a9bcf
5356104
c048ed5
5356104
18a9bcf
c048ed5
18a9bcf
c048ed5
 
18a9bcf
 
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
24f9c2c
18a9bcf
5356104
24f9c2c
5356104
18a9bcf
24f9c2c
18a9bcf
24f9c2c
 
18a9bcf
 
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
019650d
18a9bcf
5356104
019650d
5356104
18a9bcf
019650d
18a9bcf
019650d
 
18a9bcf
 
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
a7dcf2b
18a9bcf
5356104
a7dcf2b
5356104
18a9bcf
a7dcf2b
18a9bcf
a7dcf2b
 
18a9bcf
 
 
 
 
 
 
 
 
 
 
 
8a04d94
 
18a9bcf
 
 
 
5356104
 
 
18a9bcf
 
 
 
 
a334ccd
d046830
 
 
 
 
 
 
 
a334ccd
 
 
 
 
 
 
 
c048ed5
 
 
 
 
 
 
 
24f9c2c
 
 
 
 
 
 
 
019650d
 
 
 
 
 
 
 
a7dcf2b
 
 
 
 
 
 
 
c5d3a48
 
97fe970
c5d3a48
 
 
 
97fe970
c5d3a48
 
 
97fe970
 
c5d3a48
 
 
 
 
 
 
 
 
 
 
 
 
0d77dd5
c5d3a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d77dd5
c5d3a48
 
 
0d77dd5
 
 
 
 
 
 
 
c5d3a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d77dd5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
---
annotations_creators:
- expert-generated
- machine-generated
language_creators:
- expert-generated
- machine-generated
language:
- de
- en
- es
- fr
- ja
- ko
- zh
license:
- other
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-paws
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
- semantic-similarity-scoring
- text-scoring
- multi-input-text-classification
paperswithcode_id: paws-x
pretty_name: 'PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification'
tags:
- paraphrase-identification
dataset_info:
- config_name: de
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 12801784
    num_examples: 49401
  - name: test
    num_bytes: 524206
    num_examples: 2000
  - name: validation
    num_bytes: 514001
    num_examples: 2000
  download_size: 9601920
  dataset_size: 13839991
- config_name: en
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 12215913
    num_examples: 49401
  - name: test
    num_bytes: 494726
    num_examples: 2000
  - name: validation
    num_bytes: 492279
    num_examples: 2000
  download_size: 9045005
  dataset_size: 13202918
- config_name: es
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 12808446
    num_examples: 49401
  - name: test
    num_bytes: 519103
    num_examples: 2000
  - name: validation
    num_bytes: 513880
    num_examples: 2000
  download_size: 9538815
  dataset_size: 13841429
- config_name: fr
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 13295557
    num_examples: 49401
  - name: test
    num_bytes: 535093
    num_examples: 2000
  - name: validation
    num_bytes: 533023
    num_examples: 2000
  download_size: 9785410
  dataset_size: 14363673
- config_name: ja
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 15041592
    num_examples: 49401
  - name: test
    num_bytes: 668628
    num_examples: 2000
  - name: validation
    num_bytes: 661770
    num_examples: 2000
  download_size: 10435711
  dataset_size: 16371990
- config_name: ko
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 13934181
    num_examples: 49401
  - name: test
    num_bytes: 562292
    num_examples: 2000
  - name: validation
    num_bytes: 554867
    num_examples: 2000
  download_size: 10263972
  dataset_size: 15051340
- config_name: zh
  features:
  - name: id
    dtype: int32
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
  splits:
  - name: train
    num_bytes: 10815499
    num_examples: 49401
  - name: test
    num_bytes: 474644
    num_examples: 2000
  - name: validation
    num_bytes: 473118
    num_examples: 2000
  download_size: 30282057
  dataset_size: 11763261
configs:
- config_name: de
  data_files:
  - split: train
    path: de/train-*
  - split: test
    path: de/test-*
  - split: validation
    path: de/validation-*
- config_name: en
  data_files:
  - split: train
    path: en/train-*
  - split: test
    path: en/test-*
  - split: validation
    path: en/validation-*
- config_name: es
  data_files:
  - split: train
    path: es/train-*
  - split: test
    path: es/test-*
  - split: validation
    path: es/validation-*
- config_name: fr
  data_files:
  - split: train
    path: fr/train-*
  - split: test
    path: fr/test-*
  - split: validation
    path: fr/validation-*
- config_name: ja
  data_files:
  - split: train
    path: ja/train-*
  - split: test
    path: ja/test-*
  - split: validation
    path: ja/validation-*
- config_name: ko
  data_files:
  - split: train
    path: ko/train-*
  - split: test
    path: ko/test-*
  - split: validation
    path: ko/validation-*
---

# Dataset Card for PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [PAWS-X](https://github.com/google-research-datasets/paws/tree/master/pawsx)
- **Repository:** [PAWS-X](https://github.com/google-research-datasets/paws/tree/master/pawsx)
- **Paper:** [PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification](https://arxiv.org/abs/1908.11828)
- **Point of Contact:** [Yinfei Yang](yinfeiy@google.com)

### Dataset Summary

This dataset contains 23,659 **human** translated PAWS evaluation pairs and
296,406 **machine** translated training pairs in six typologically distinct
languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in
[PAWS-Wiki](https://github.com/google-research-datasets/paws#paws-wiki).

For further details, see the accompanying paper:
[PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase
Identification](https://arxiv.org/abs/1908.11828)

### Supported Tasks and Leaderboards

It has been majorly used for paraphrase identification for English and other 6 languages namely French, Spanish, German, Chinese, Japanese, and Korean

### Languages

The dataset is in English, French, Spanish, German, Chinese, Japanese, and Korean

## Dataset Structure

### Data Instances

For en:
```
id		    :   1
sentence1	:	In Paris , in October 1560 , he secretly met the English ambassador , Nicolas Throckmorton , asking him for a passport to return to England through Scotland .
sentence2	:	In October 1560 , he secretly met with the English ambassador , Nicolas Throckmorton , in Paris , and asked him for a passport to return to Scotland through England .
label       :   0
```
For fr:
```
id		    :   1
sentence1	:	À Paris, en octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, lui demandant un passeport pour retourner en Angleterre en passant par l'Écosse.
sentence2	:	En octobre 1560, il rencontra secrètement l'ambassadeur d'Angleterre, Nicolas Throckmorton, à Paris, et lui demanda un passeport pour retourner en Écosse par l'Angleterre.
label       :   0
```

### Data Fields

All files are in tsv format with four columns:

Column Name | Data
:---------- | :--------------------------------------------------------
id          | An ID that matches the ID of the source pair in PAWS-Wiki
sentence1   | The first sentence
sentence2   | The second sentence
label       | Label for each pair

The source text of each translation can be retrieved by looking up the ID in the
corresponding file in PAWS-Wiki.

### Data Splits

The numbers of examples for each of the seven languages are shown below:

Language | Train   | Dev    | Test
:------- | ------: | -----: | -----:
en       | 49,401  | 2,000  | 2,000
fr       | 49,401  | 2,000  | 2,000
es       | 49,401  | 2,000  | 2,000
de       | 49,401  | 2,000  | 2,000
zh       | 49,401  | 2,000  | 2,000
ja       | 49,401  | 2,000  | 2,000
ko       | 49,401  | 2,000  | 2,000


> **Caveat**: please note that the dev and test sets of PAWS-X are both sourced
> from the dev set of PAWS-Wiki. As a consequence, the same `sentence 1` may
> appear in both the dev and test sets. Nevertheless our data split guarantees
> that there is no overlap on sentence pairs (`sentence 1` + `sentence 2`)
> between dev and test.

## Dataset Creation

### Curation Rationale

Most existing work on adversarial data generation focuses on English. For example, PAWS (Paraphrase Adversaries from Word Scrambling) (Zhang et al., 2019) consists of challenging English paraphrase identification pairs from Wikipedia and Quora. They remedy this gap with PAWS-X, a new dataset of 23,659 human translated PAWS evaluation pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. They provide baseline numbers for three models with different capacity to capture non-local context and sentence structure, and using different multilingual training and evaluation regimes. Multilingual BERT (Devlin et al., 2019) fine-tuned on PAWS English plus machine-translated data performs the best, with a range of 83.1-90.8 accuracy across the non-English languages and an average accuracy gain of 23% over the next best model. PAWS-X shows the effectiveness of deep, multilingual pre-training while also leaving considerable headroom as a new challenge to drive multilingual research that better captures structure and contextual information.

### Source Data

PAWS (Paraphrase Adversaries from Word Scrambling)

#### Initial Data Collection and Normalization

All translated pairs are sourced from examples in [PAWS-Wiki](https://github.com/google-research-datasets/paws#paws-wiki)

#### Who are the source language producers?

This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean.

### Annotations

#### Annotation process

If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes.

#### Who are the annotators?

The paper mentions the translate team, especially Mengmeng Niu, for the help with the annotations.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.

### Licensing Information

The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. The dataset is provided "AS IS" without any warranty, express or implied. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

### Citation Information

```
@InProceedings{pawsx2019emnlp,
  title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}},
  author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason},
  booktitle = {Proc. of EMNLP},
  year = {2019}
}
```
### Contributions

Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik), [@gowtham1997](https://github.com/gowtham1997) for adding this dataset.