File size: 5,512 Bytes
b59f946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f60f2ce
b59f946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""20Newsgroup  dataset"""


import os

import datasets


_CITATION = """
@inproceedings{Lang95,
    author = {Ken Lang},
    title = {Newsweeder: Learning to filter netnews}
    year = {1995}
    booktitle = {Proceedings of the Twelfth International Conference on Machine Learning}
    pages = {331-339}
    }
 """

_DESCRIPTION = """
The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across
20 different newsgroups. The 20 newsgroups collection has become a popular data set for experiments in text applications of
machine learning techniques, such as text classification and text clustering.
"""

_DOWNLOAD_URL = {
    "bydate": "http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz",
    "19997": "http://qwone.com/~jason/20Newsgroups/20news-19997.tar.gz",
    "18828": "http://qwone.com/~jason/20Newsgroups/20news-18828.tar.gz",
}
_NEWS_GROUPS = [
    "comp.graphics",
    "comp.os.ms-windows.misc",
    "comp.sys.ibm.pc.hardware",
    "comp.sys.mac.hardware",
    "comp.windows.x",
    "rec.autos",
    "rec.motorcycles",
    "rec.sport.baseball",
    "rec.sport.hockey",
    "sci.crypt",
    "sci.electronics",
    "sci.med",
    "sci.space",
    "misc.forsale",
    "talk.politics.misc",
    "talk.politics.guns",
    "talk.politics.mideast",
    "talk.religion.misc",
    "alt.atheism",
    "soc.religion.christian",
]
_VERSIONS = {"19997": "1.0.0", "bydate": "2.0.0", "18828": "3.0.0"}

_DESC = {
    "19997": "the original, unmodified version.",
    "bydate": "sorted by date into training(60%) and test(40%) sets, does not include cross-posts (duplicates) and does not include newsgroup-identifying headers (Xref, Newsgroups, Path, Followup-To, Date)",
    "18828": 'does not include cross-posts and includes only the "From" and "Subject" headers.',
}
_CONFIG_NAMES = []
for version in _VERSIONS:
    for group in _NEWS_GROUPS:
        _CONFIG_NAMES.append(version + "_" + group)

_CONFIG_NAMES = sorted(_CONFIG_NAMES)


class NewsgroupConfig(datasets.BuilderConfig):
    """BuilderConfig for 20Newsgroup."""

    def __init__(self, sub_dir, **kwargs):
        """Constructs a 20Newsgroup.

        Args:
        sub_dirs: str
        **kwargs: keyword arguments forwarded to super.
        """

        super(NewsgroupConfig, self).__init__(**kwargs)
        self.sub_dir = sub_dir


class Newsgroups(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        NewsgroupConfig(
            name=name,
            description=_DESC[name.split("_")[0]],
            sub_dir=name.split("_")[1],
            version=datasets.Version(_VERSIONS[name.split("_")[0]]),
        )
        for name in _CONFIG_NAMES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION + "\n" + self.config.description,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                }
            ),
            homepage="http://qwone.com/~jason/20Newsgroups/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        url = _DOWNLOAD_URL[self.config.name.split("_")[0]]
        path = dl_manager.download_and_extract(url)
        if self.config.name.startswith("bydate"):

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"files_path": os.path.join(path, "20news-bydate-train", self.config.sub_dir)},
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"files_path": os.path.join(path, "20news-bydate-test", self.config.sub_dir)},
                ),
            ]
        elif self.config.name.startswith("19997"):
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"files_path": os.path.join(path, "20_newsgroups", self.config.sub_dir)},
                )
            ]
        else:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"files_path": os.path.join(path, "20news-18828", self.config.sub_dir)},
                )
            ]

    def _generate_examples(self, files_path):
        """Yields examples."""
        files = sorted(os.listdir(files_path))
        for id_, file in enumerate(files):
            filepath = os.path.join(files_path, file)
            with open(
                filepath, encoding="utf8", errors="ignore"
            ) as f:  # here we can ignore byte encoded tokens. we only have a very few and in most case it happens at the end of the file (kind of \FF)
                text = f.read()
                yield id_, {"text": text}