File size: 5,403 Bytes
17e5b01
 
e2e2841
17e5b01
 
 
e2e2841
991a23e
17e5b01
 
 
 
 
 
 
991a23e
6284ee6
cafe578
9603cb9
cdb93f5
6284ee6
cdb93f5
 
 
 
 
 
 
 
 
 
a47db74
 
 
cdb93f5
 
 
 
 
17e5b01
 
6284ee6
17e5b01
 
cafe578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e5b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6284ee6
 
 
17e5b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd0564
 
 
cdb93f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
task_categories:
- text-classification
multilinguality:
- monolingual
task_ids:
- text-scoring
language:
- en
annotations_creators:
- crowdsourced
source_datasets:
- extended
size_categories:
- 10K<n<100K
license:
- cc-by-sa-4.0
paperswithcode_id: null
pretty_name: GoogleWellformedQuery
language_creators:
- found
dataset_info:
  features:
  - name: rating
    dtype: float32
  - name: content
    dtype: string
  splits:
  - name: train
    num_bytes: 857391
    num_examples: 17500
  - name: test
    num_bytes: 189503
    num_examples: 3850
  - name: validation
    num_bytes: 184110
    num_examples: 3750
  download_size: 1157019
  dataset_size: 1231004
---

# Dataset Card for Google Query-wellformedness Dataset

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [GitHub](https://github.com/google-research-datasets/query-wellformedness)
- **Repository:** [GitHub](https://github.com/google-research-datasets/query-wellformedness)
- **Paper:** [ARXIV](https://arxiv.org/abs/1808.09419)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

Google's query wellformedness dataset was created by crowdsourcing well-formedness annotations for 25,100 queries from the Paralex corpus. Every query was annotated by five raters each with 1/0 rating of whether or not the query is well-formed.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English

## Dataset Structure

### Data Instances

```
{'rating': 0.2, 'content': 'The European Union includes how many ?'}
```

### Data Fields

- `rating`: a `float` between 0-1
- `sentence`: query which you want to rate

### Data Splits

|                            | Train   | Valid | Test |
| -----                      | ------ | ----- | ---- |
| Input Sentences            |   17500     |   3750    |  3850    |

## Dataset Creation

### Curation Rationale

Understanding search queries is a hard problem as it involves dealing with “word salad” text ubiquitously issued by users. However, if a query resembles a well-formed question, a natural language processing pipeline is able to perform more accurate interpretation, thus reducing downstream compounding errors. Hence, identifying whether or not a query is well formed can enhance query understanding. This dataset introduce a new task of identifying a well-formed natural language question. 

### Source Data

Used the Paralex corpus (Fader et al., 2013) that contains pairs of noisy paraphrase questions. These questions were issued by users in WikiAnswers (a Question-Answer forum) and consist of both web-search query like constructs (“5 parts of chloroplast?”) and well-formed questions (“What is the punishment for grand theft?”).

#### Initial Data Collection and Normalization

Selected 25,100 queries from the unique list of queries extracted from the corpus such that no two queries in the selected set are paraphrases.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

The queries are annotated into well-formed or non-wellformed questions if it satisfies the following:

1. Query is grammatical.
2. Query is an explicit question.
3. Query does not contain spelling errors.

#### Who are the annotators?

Every query was labeled by five different crowdworkers with a binary label indicating whether a query is well-formed or not. And average of the ratings of the five annotators was reported, to get the probability of a query being well-formed.

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Query-wellformedness dataset is licensed under CC BY-SA 4.0. Any third party content or data is provided “As Is” without any warranty, express or implied.

### Citation Information

```
@InProceedings{FaruquiDas2018,
   title = {{Identifying Well-formed Natural Language Questions}},
   author = {Faruqui, Manaal and Das, Dipanjan},
   booktitle = {Proc. of EMNLP},
   year = {2018}
}
```

### Contributions

Thanks to [@vasudevgupta7](https://github.com/vasudevgupta7) for adding this dataset.