Datasets:

Languages:
English
ArXiv:
License:
gap / gap.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
8e52943
raw
history blame
4.52 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""GAP is a gender-balanced text data set."""
import csv
import datasets
_CITATION = """
@article{DBLP:journals/corr/abs-1810-05201,
author = {Kellie Webster and
Marta Recasens and
Vera Axelrod and
Jason Baldridge},
title = {Mind the {GAP:} {A} Balanced Corpus of Gendered Ambiguous Pronouns},
journal = {CoRR},
volume = {abs/1810.05201},
year = {2018},
url = {http://arxiv.org/abs/1810.05201},
archivePrefix = {arXiv},
eprint = {1810.05201},
timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1810-05201},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """
GAP is a gender-balanced dataset containing 8,908 coreference-labeled pairs of
(ambiguous pronoun, antecedent name), sampled from Wikipedia and released by
Google AI Language for the evaluation of coreference resolution in practical
applications.
"""
_TRAINURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-development.tsv"
_VALIDATIONURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-validation.tsv"
_TESTURL = "https://raw.githubusercontent.com/google-research-datasets/gap-coreference/master/gap-test.tsv"
class Gap(datasets.GeneratorBasedBuilder):
"""GAP is a gender-balanced dataset.
It contains 8,908 coreference-labeled pairs
of (ambiguous pronoun, antecedent name), sampled from Wikipedia.
"""
VERSION = datasets.Version("0.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"ID": datasets.Value("string"),
"Text": datasets.Value("string"),
"Pronoun": datasets.Value("string"),
"Pronoun-offset": datasets.Value("int32"),
"A": datasets.Value("string"),
"A-offset": datasets.Value("int32"),
"A-coref": datasets.Value("bool"),
"B": datasets.Value("string"),
"B-offset": datasets.Value("int32"),
"B-coref": datasets.Value("bool"),
"URL": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/google-research-datasets/gap-coreference",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
directory = dl_manager.download_and_extract(
{"train": _TRAINURL, "validation": _VALIDATIONURL, "test": _TESTURL}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": directory["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": directory["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": directory["test"]},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as tsvfile:
reader = csv.DictReader(tsvfile, dialect="excel-tab")
for i, row in enumerate(reader):
row["A-coref"] = row["A-coref"] == "TRUE"
row["B-coref"] = row["B-coref"] == "TRUE"
row["A-offset"] = int(row["A-offset"])
row["B-offset"] = int(row["B-offset"])
row["Pronoun-offset"] = int(row["Pronoun-offset"])
yield i, row