Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,103 Bytes
05a98c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset containing polar questions and indirect answers."""


import csv

import datasets


_CITATION = """\
@InProceedings{louis_emnlp2020,
  author =      "Annie Louis and Dan Roth and Filip Radlinski",
  title =       ""{I}'d rather just go to bed": {U}nderstanding {I}ndirect {A}nswers",
  booktitle =   "Proceedings of the 2020 Conference on Empirical Methods
  in Natural Language Processing",
  year =        "2020",
}
"""

_DESCRIPTION = """\
The Circa (meaning ‘approximately’) dataset aims to help machine learning systems
to solve the problem of interpreting indirect answers to polar questions.

The dataset contains pairs of yes/no questions and indirect answers, together with
annotations for the interpretation of the answer. The data is collected in 10
different social conversational situations (eg. food preferences of a friend).

NOTE: There might be missing labels in the dataset and we have replaced them with -1.
The original dataset contains no train/dev/test splits.
"""

_LICENSE = "Creative Commons Attribution 4.0 License"

_DATA_URL = "https://raw.githubusercontent.com/google-research-datasets/circa/main/circa-data.tsv"


class Circa(datasets.GeneratorBasedBuilder):
    """Dataset containing polar questions and indirect answers."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "context": datasets.Value("string"),
                "question-X": datasets.Value("string"),
                "canquestion-X": datasets.Value("string"),
                "answer-Y": datasets.Value("string"),
                "judgements": datasets.Value("string"),
                "goldstandard1": datasets.features.ClassLabel(
                    names=[
                        "Yes",
                        "No",
                        "In the middle, neither yes nor no",
                        "Probably yes / sometimes yes",
                        "Probably no",
                        "Yes, subject to some conditions",
                        "Other",
                        "I am not sure how X will interpret Y’s answer",
                    ]
                ),
                "goldstandard2": datasets.features.ClassLabel(
                    names=[
                        "Yes",
                        "No",
                        "In the middle, neither yes nor no",
                        "Yes, subject to some conditions",
                        "Other",
                    ]
                ),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://github.com/google-research-datasets/circa",
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_path = dl_manager.download_and_extract(_DATA_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": train_path,
                    "split": datasets.Split.TRAIN,
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            goldstandard1_labels = [
                "Yes",
                "No",
                "In the middle, neither yes nor no",
                "Probably yes / sometimes yes",
                "Probably no",
                "Yes, subject to some conditions",
                "Other",
                "I am not sure how X will interpret Y’s answer",
            ]
            goldstandard2_labels = [
                "Yes",
                "No",
                "In the middle, neither yes nor no",
                "Yes, subject to some conditions",
                "Other",
            ]
            data = csv.reader(f, delimiter="\t")
            next(data, None)  # skip the headers
            for id_, row in enumerate(data):
                row = [x if x != "nan" else -1 for x in row]
                _, context, question_X, canquestion_X, answer_Y, judgements, goldstandard1, goldstandard2 = row
                if goldstandard1 not in goldstandard1_labels:
                    goldstandard1 = -1
                if goldstandard2 not in goldstandard2_labels:
                    goldstandard2 = -1

                yield id_, {
                    "context": context,
                    "question-X": question_X,
                    "canquestion-X": canquestion_X,
                    "answer-Y": answer_Y,
                    "judgements": judgements,
                    "goldstandard1": goldstandard1,
                    "goldstandard2": goldstandard2,
                }