File size: 7,339 Bytes
262f141
 
 
 
 
 
 
 
 
 
 
 
 
 
f565b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00834ac
f565b33
 
 
 
 
 
 
00834ac
f565b33
 
 
 
 
 
 
00834ac
f565b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c00f4
 
 
 
 
 
 
 
60c8eee
 
59bf0b7
60c8eee
 
 
 
 
 
 
 
 
 
 
d770df9
2f6aa73
 
 
 
 
 
60c8eee
 
 
 
 
 
 
 
d770df9
60c8eee
 
 
 
 
13f8a83
 
 
60c8eee
13f8a83
 
60c8eee
13f8a83
60c8eee
 
 
 
 
 
2f6aa73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
configs:
- config_name: expression_HEK
  data_files:
  - split: train
    path: "expression_level/HEK_10fold_cv_split.tsv"
- config_name: expression_Muscle
  data_files:
  - split: train
    path: "expression_level/Muscle_10fold_cv_split.tsv"
- config_name: expression_pc3
  data_files:
  - split: train
    path: "expression_level/pc3_10fold_cv_split.tsv"
- config_name: translation_efficiency_HEK
  data_files:
  - split: train
    path: "translation_efficiency/HEK_10fold_cv_split.tsv"
- config_name: translation_efficiency_Muscle
  data_files:
  - split: train
    path: "translation_efficiency/Muscle_10fold_cv_split.tsv"
- config_name: translation_efficiency_pc3
  data_files:
  - split: train
    path: "translation_efficiency/pc3_10fold_cv_split.tsv"
- config_name: modification_site
  data_files:
  - split: train
    path: "modification_site_prediction/train.tsv"
  - split: validation
    path: "modification_site_prediction/valid.tsv"
  - split: test
    path: "modification_site_prediction/test.tsv"
- config_name: ncrna_family_bnoise0
  data_files:
  - split: train
    path: "ncrna_family_classification/bnoise0/train.tsv"
  - split: validation
    path: "ncrna_family_classification/bnoise0/valid.tsv"
  - split: test
    path: "ncrna_family_classification/bnoise0/test.tsv"
- config_name: ncrna_family_bnoise200
  data_files:
  - split: train
    path: "ncrna_family_classification/bnoise200/train.tsv"
  - split: validation
    path: "ncrna_family_classification/bnoise200/valid.tsv"
  - split: test
    path: "ncrna_family_classification/bnoise200/test.tsv"
- config_name: protein_abundance_athaliana
  data_files:
  - split: train
    path: "protein_abundance/athaliana_5fold_cv_split.tsv"
- config_name: protein_abundance_dmelanogaster
  data_files:
  - split: train
    path: "protein_abundance/dmelanogaster_5fold_cv_split.tsv"
- config_name: protein_abundance_ecoli
  data_files:
  - split: train
    path: "protein_abundance/ecoli_5fold_cv_split.tsv"
- config_name: protein_abundance_hsapiens
  data_files:
  - split: train
    path: "protein_abundance/hsapiens_5fold_cv_split.tsv"
- config_name: protein_abundance_scerevisiae
  data_files:
  - split: train
    path: "protein_abundance/scerevisiae_5fold_cv_split.tsv"
- config_name: splice_site_acceptor
  data_files:
  - split: train
    path: "splice_site_prediction/acceptor/train.tsv"
  - split: validation
    path: "splice_site_prediction/acceptor/valid.tsv"
  - split: test_danio
    path: "splice_site_prediction/acceptor/test_Danio.tsv"
  - split: test_fly
    path: "splice_site_prediction/acceptor/test_Fly.tsv"
  - split: test_thaliana
    path: "splice_site_prediction/acceptor/test_Thaliana.tsv"
  - split: test_worm
    path: "splice_site_prediction/acceptor/test_Worm.tsv"
- config_name: splice_site_donor
  data_files:
  - split: train
    path: "splice_site_prediction/donor/train.tsv"
  - split: validation
    path: "splice_site_prediction/donor/valid.tsv"
  - split: test_danio
    path: "splice_site_prediction/donor/test_Danio.tsv"
  - split: test_fly
    path: "splice_site_prediction/donor/test_Fly.tsv"
  - split: test_thaliana
    path: "splice_site_prediction/donor/test_Thaliana.tsv"
  - split: test_worm
    path: "splice_site_prediction/donor/test_Worm.tsv"
- config_name: transcript_abundance_athaliana
  data_files:
  - split: train
    path: "transcript_abundance/athaliana_5fold_cv_split.tsv"
- config_name: transcript_abundance_dmelanogaster
  data_files:
  - split: train
    path: "transcript_abundance/dmelanogaster_5fold_cv_split.tsv"
- config_name: transcript_abundance_ecoli
  data_files:
  - split: train
    path: "transcript_abundance/ecoli_5fold_cv_split.tsv"
- config_name: transcript_abundance_hsapiens
  data_files:
  - split: train
    path: "transcript_abundance/hsapiens_5fold_cv_split.tsv"
- config_name: transcript_abundance_hvolcanii
  data_files:
  - split: train
    path: "transcript_abundance/hvolcanii_5fold_cv_split.tsv"
- config_name: transcript_abundance_ppastoris
  data_files:
  - split: train
    path: "transcript_abundance/ppastoris_5fold_cv_split.tsv"
- config_name: transcript_abundance_scerevisiae
  data_files:
  - split: train
    path: "transcript_abundance/scerevisiae_5fold_cv_split.tsv"
- config_name: mean_ribosome_load
  data_files:
  - split: train
    path: "mean_ribosome_load/train.tsv"
  - split: validation
    path: "mean_ribosome_load/validation_random7600.tsv"
  - split: test
    path: "mean_ribosome_load/test_human7600.tsv"
---

# AIDO.RNA Benchmark Datasets

## mRNA related tasks
* Translation efficiency prediction from Chu et al.(2024) [1]
   * 3 cell lines: Muscle, pc3, HEK
   * input sequence: 5'UTR
   * 10-fold cross-validation split
* mRNA expression level prediction from Chu et al.(2024) [1]
   * 3 cell lines: Muscle, pc3, HEK
   * input sequence: 5'UTR
   * 10-fold cross-validation split
* Mean ribosome load prediction from Sample et al. (2019) [2]
   * input sequence: 5'UTR
   * ouput: mean ribosome load
   * the original data source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002
   * Similar to the previous studies [2, 4], we also split the data into the following three 
     * train: total 76.3k samples
     * val: total 7600 samples (also called as Random 7600 in [4])
     * test: total 7600 samples (also called as Human 7600 in [4])
* Transcript abundance prediction from Outeiral and Deane (2024) [3]
   * 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
   * input sequence: CDS
   * 5-fold cross-validation split
* Protein abundance prediction from Outeiral and Deane (2024) [3]
   * 5 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, and S. cerevisiae
   * input sequence: CDS
   * 5-fold cross-validation split
   * Note: We have transformed the label to logarithm space using the following function: `log(1+x)`.


## RNA function prediction tasks
The datasets listed below are collected following the setting in Wang et al. (2023) [4].
* Cross-species splice site prediction
  * 2 datasets: acceptor, donor
  * 4 test species: zebrafish, fruit fly, worm, and plant
  * input sequence: pre-mRNA fragment
* ncRNA family classification
  * 2 datasets: boundary noise 0, boundary noise 200
  * input sequence: small noncoding RNA with different level of boundary noise
* RNA modification site prediction
  * 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.


## Reference
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.