File size: 7,339 Bytes
262f141 f565b33 00834ac f565b33 00834ac f565b33 00834ac f565b33 14c00f4 60c8eee 59bf0b7 60c8eee d770df9 2f6aa73 60c8eee d770df9 60c8eee 13f8a83 60c8eee 13f8a83 60c8eee 13f8a83 60c8eee 2f6aa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
---
configs:
- config_name: expression_HEK
data_files:
- split: train
path: "expression_level/HEK_10fold_cv_split.tsv"
- config_name: expression_Muscle
data_files:
- split: train
path: "expression_level/Muscle_10fold_cv_split.tsv"
- config_name: expression_pc3
data_files:
- split: train
path: "expression_level/pc3_10fold_cv_split.tsv"
- config_name: translation_efficiency_HEK
data_files:
- split: train
path: "translation_efficiency/HEK_10fold_cv_split.tsv"
- config_name: translation_efficiency_Muscle
data_files:
- split: train
path: "translation_efficiency/Muscle_10fold_cv_split.tsv"
- config_name: translation_efficiency_pc3
data_files:
- split: train
path: "translation_efficiency/pc3_10fold_cv_split.tsv"
- config_name: modification_site
data_files:
- split: train
path: "modification_site_prediction/train.tsv"
- split: validation
path: "modification_site_prediction/valid.tsv"
- split: test
path: "modification_site_prediction/test.tsv"
- config_name: ncrna_family_bnoise0
data_files:
- split: train
path: "ncrna_family_classification/bnoise0/train.tsv"
- split: validation
path: "ncrna_family_classification/bnoise0/valid.tsv"
- split: test
path: "ncrna_family_classification/bnoise0/test.tsv"
- config_name: ncrna_family_bnoise200
data_files:
- split: train
path: "ncrna_family_classification/bnoise200/train.tsv"
- split: validation
path: "ncrna_family_classification/bnoise200/valid.tsv"
- split: test
path: "ncrna_family_classification/bnoise200/test.tsv"
- config_name: protein_abundance_athaliana
data_files:
- split: train
path: "protein_abundance/athaliana_5fold_cv_split.tsv"
- config_name: protein_abundance_dmelanogaster
data_files:
- split: train
path: "protein_abundance/dmelanogaster_5fold_cv_split.tsv"
- config_name: protein_abundance_ecoli
data_files:
- split: train
path: "protein_abundance/ecoli_5fold_cv_split.tsv"
- config_name: protein_abundance_hsapiens
data_files:
- split: train
path: "protein_abundance/hsapiens_5fold_cv_split.tsv"
- config_name: protein_abundance_scerevisiae
data_files:
- split: train
path: "protein_abundance/scerevisiae_5fold_cv_split.tsv"
- config_name: splice_site_acceptor
data_files:
- split: train
path: "splice_site_prediction/acceptor/train.tsv"
- split: validation
path: "splice_site_prediction/acceptor/valid.tsv"
- split: test_danio
path: "splice_site_prediction/acceptor/test_Danio.tsv"
- split: test_fly
path: "splice_site_prediction/acceptor/test_Fly.tsv"
- split: test_thaliana
path: "splice_site_prediction/acceptor/test_Thaliana.tsv"
- split: test_worm
path: "splice_site_prediction/acceptor/test_Worm.tsv"
- config_name: splice_site_donor
data_files:
- split: train
path: "splice_site_prediction/donor/train.tsv"
- split: validation
path: "splice_site_prediction/donor/valid.tsv"
- split: test_danio
path: "splice_site_prediction/donor/test_Danio.tsv"
- split: test_fly
path: "splice_site_prediction/donor/test_Fly.tsv"
- split: test_thaliana
path: "splice_site_prediction/donor/test_Thaliana.tsv"
- split: test_worm
path: "splice_site_prediction/donor/test_Worm.tsv"
- config_name: transcript_abundance_athaliana
data_files:
- split: train
path: "transcript_abundance/athaliana_5fold_cv_split.tsv"
- config_name: transcript_abundance_dmelanogaster
data_files:
- split: train
path: "transcript_abundance/dmelanogaster_5fold_cv_split.tsv"
- config_name: transcript_abundance_ecoli
data_files:
- split: train
path: "transcript_abundance/ecoli_5fold_cv_split.tsv"
- config_name: transcript_abundance_hsapiens
data_files:
- split: train
path: "transcript_abundance/hsapiens_5fold_cv_split.tsv"
- config_name: transcript_abundance_hvolcanii
data_files:
- split: train
path: "transcript_abundance/hvolcanii_5fold_cv_split.tsv"
- config_name: transcript_abundance_ppastoris
data_files:
- split: train
path: "transcript_abundance/ppastoris_5fold_cv_split.tsv"
- config_name: transcript_abundance_scerevisiae
data_files:
- split: train
path: "transcript_abundance/scerevisiae_5fold_cv_split.tsv"
- config_name: mean_ribosome_load
data_files:
- split: train
path: "mean_ribosome_load/train.tsv"
- split: validation
path: "mean_ribosome_load/validation_random7600.tsv"
- split: test
path: "mean_ribosome_load/test_human7600.tsv"
---
# AIDO.RNA Benchmark Datasets
## mRNA related tasks
* Translation efficiency prediction from Chu et al.(2024) [1]
* 3 cell lines: Muscle, pc3, HEK
* input sequence: 5'UTR
* 10-fold cross-validation split
* mRNA expression level prediction from Chu et al.(2024) [1]
* 3 cell lines: Muscle, pc3, HEK
* input sequence: 5'UTR
* 10-fold cross-validation split
* Mean ribosome load prediction from Sample et al. (2019) [2]
* input sequence: 5'UTR
* ouput: mean ribosome load
* the original data source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002
* Similar to the previous studies [2, 4], we also split the data into the following three
* train: total 76.3k samples
* val: total 7600 samples (also called as Random 7600 in [4])
* test: total 7600 samples (also called as Human 7600 in [4])
* Transcript abundance prediction from Outeiral and Deane (2024) [3]
* 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
* input sequence: CDS
* 5-fold cross-validation split
* Protein abundance prediction from Outeiral and Deane (2024) [3]
* 5 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, and S. cerevisiae
* input sequence: CDS
* 5-fold cross-validation split
* Note: We have transformed the label to logarithm space using the following function: `log(1+x)`.
## RNA function prediction tasks
The datasets listed below are collected following the setting in Wang et al. (2023) [4].
* Cross-species splice site prediction
* 2 datasets: acceptor, donor
* 4 test species: zebrafish, fruit fly, worm, and plant
* input sequence: pre-mRNA fragment
* ncRNA family classification
* 2 datasets: boundary noise 0, boundary noise 200
* input sequence: small noncoding RNA with different level of boundary noise
* RNA modification site prediction
* 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I.
## Reference
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023. |